最新要闻
- 当前通讯!全球估值观察系列五十九:中证1000PE估值为33.5%分位数
- 辽宁养老金调整方案(最新)将公布,2023企退职工涨300-500元,属实吗?
- “打死2人”,印巴两年来在此首爆冲突
- 写给婆婆50字_写给西平
- 建业地产:暂停支付境外债务,集中一切资源保证现有项目交付
- 2023重庆九龙坡中考成绩查询入口
- 当前消息!Xbox Showcase宣布将于7月11日展示即将推出的独立游戏
- 东部战区海军航空兵某部组织2023年度队列会操评比|全球消息
- 无功不受禄(无功)
- 哺乳期来月经正常吗_哺乳期会来月经吗
- 环球快资讯:沈阳市和平湾生态科创示范区项目正式开工
- 薪酬体系设计者的年终总结
- 暴雨袭来 居民连夜排积水 要闻速递
- 过完端午节你胖了吗?健康瘦、不反弹的方法快来get一下 环球速讯
- 每日速看!宽字的组词有哪些_宽字怎么组词相关介绍简介
- 北大核心和中文核心是一样的吗_北大核心与中文核心什么区别
手机
中衡设计子公司获得授予发明专利权通知书
工信部:5月共查处“黑广播”违法犯罪案件49起 环球播资讯
- 中衡设计子公司获得授予发明专利权通知书
- 工信部:5月共查处“黑广播”违法犯罪案件49起 环球播资讯
- 罗马诺:阿斯皮利奎塔与国米谈妥2年合同,不会考虑毕尔巴鄂-今日看点
- 国金证券:给予博众精工买入评级,目标价位41.58元-全球速看料
- 3天假期迎游客84.51万人次!江宁“创意+民俗”产品受青睐
- 芜湖海事“三个强化”筑牢内部安全“防火墙”-全球新动态
家电
【世界热闻】AC耦合为何必须使用直流均衡信号?
【摘要】
信号的AC耦合方式具有屏蔽发送端和接收端直流偏置不一致的好处,但并不是所有信号都适合使用这种方式传输,即只有直流平衡信号(数据流中的1与0的数量相等的状态)才可以。本文试图从电容充放电的角度,解释非直流平衡信号不适用于AC耦合方式传输的原因。
一、问题的提出在某系统研发过程中,出现了2次串行数据在接收端不能正常接收的情形,均为AC耦合时传输了非直流平衡信号。一次是发送固定码型64个连0然后一个1的变化,在接收端不能正确解码;另外一次为PRBS的数据源经过ADC采样后,每个采样点量化的8bit分别由8个通道传输,每个通道的0,1不均衡,使用AC耦合传输后不能正常接收。为何非直流平衡信号不能通过AC耦合电路,本文试图解释这一问题。
(相关资料图)
二、解决思路1.电容的基本概念
电容的定义如公式1所示。
Q为电容的电荷量,U为电容两极间电压。
根据这个定义可以知道,电容可以储存电荷,储存的电荷量与加在电容上的电压有关。电容在存储或者释放电荷时,必然会有电荷的流动,形成电流。电流的大小如公式2所示。
比如电容在充电时,正极板积聚更多正电荷,负极板积聚更多负电荷,电荷的迁徙必将产生电流。这个公式说明,对于同一个电容来说,充放电时电流大小与电容极板间电压的变化快慢有关,变化越快,电流越大。
2.电容的充电和放电
通俗的解释电容的充电和放电,可以有如下描述。
电容充电:两极板的压差变大,积聚更多电荷;
电容放电:两极板的压差变小,释放更多电荷;
设电容初始电压为V0,最终电压为V∞,则任意时刻t的充电/放电电压为
图 1 电容充放电电压曲线
一般情况下,在大约3~5RC后,电容的充放电过程就基本完成了。因此时间常数RC直接决定了电容充放电的快慢。根据公式2,对于同一个电路来说(充放电时间一样),充放电前后的压差越大(电容压差定义为|V∞- V0|),那么充放电的电流也就越大。
电容的隔直流,通交流特性,也由电容的充放电来解释。如果电容两极的电压不变化,则没有电流和电荷的流动。如果电压发生变化,电路中就会产生电流,电流在电容的另一端就会引起电压的变化。也就是说,直流信号相当于极板间电压无变化,没有电流流过;交流信号,电容在不停的充放电,有电流流过,则相应的电压变化也传递到电容的另外一端。
3.电容两端电压不能突变
不论电荷聚集到电容极板还是从电容极板释放,都需要一个过程,也就是电容上的电荷值不会突变,根据公式1电容两端的电压也不会突变,而是随着电荷Q的聚集/释放过程而逐渐变化。比如电容两侧目前电压分别为V1=1.2V,V2=0.8V,电容充电完成到达稳态,电容两侧压差为0.4V,左侧极板积聚正电荷,右侧极板积聚负电荷,如图 2所示。
图 2 电容充电稳定图
如果电容V1侧电压瞬间增大到1.4V,电容启动充电过程。根据电容两端电压不能突变原理,此时V2处的电压会先升高到1.0V。由于电容为充电过程,V1积聚更多正电荷,V2积聚更多负电荷,释放更多正电荷,致使V2的电压下降,一直到0.8V。这时电容充电过程完成,再次进入平衡状态,此时电容两侧压差达到0.6V。
图 3 电容充电时的动态电压变化
如果电容V1侧电压瞬间降低到1.0V,电容启动放电过程。根据电容两端电压不能突变原理,此时V2处的电压会先降低到0.6V。由于电容为放电过程,V1释放更多正电荷,V2释放更多负电荷,聚集更多正电荷,致使V2的电压上升,一直到0.8V。这时电容放电过程完成,再次进入平衡状态,此时电容两侧压差达到0.2V。
图 4 电容放电时的动态电压变化
通过上面的实例分析,可以看到交流信号可以通过电容的原因:如果V1为交流信号,在1.4V和1.0V之间不停的交替变化,那么只要电容充放电的时间足够大,换句话说就是信号周期远小于充放电时间,就可以把这种变化带到V2侧,V2就会在1.0V和0.6V之间不停的交替变化,从而实现了交流信号通过电容。这个在后续章节中有更详尽的分析。
本质上,还是由于电路中不停的有电流(电荷的迁徙)流过,最终表现为电压的变化。下面通过对于不同信号的分析,说明交流信号通过电容传输的变化情况。
假设一个交流信号V1,经过电容进行AC耦合传输。V1信号的直流偏置为1.2V,摆幅0.4V。经过电容传输后,得到信号V2。V2的直流偏置为V2offset=0.8V。
图 5 AC耦合电路示意图
4.信号从非直流平衡变为直流平衡
V1从常低变为交流
图6 从常低电平到平衡信号的转换
t1时刻:V0=1.0-0.8=0.2,V∞=1.4-0.8=0.6,电容压差变化|V∞-V0|=0.4V。到达t2时,电容完成了时间为∆t的充电过程,由于充电导致的V2电压变化∆V,即t2时刻V2=1.2-∆V。
t2时刻:V0=1.4-(1.2-∆V)=0.2+∆V,V∞=1.0-0.8=0.2,电容压差变化|V∞-V0|=∆V。到达t3时,电容完成相同时间∆t的放电过程,由于放电导致的V2电压变化∆V’,到t3时刻V2=0.8-∆V+∆V’。
结合第2小节中电容充放电时间的解释,对于同一个电路,电容压差变化(|V∞-V0|)越大,充放电的时间越短,或者说相同的时间内电容压差变化(|V∞-V0|)越大,极板电压变化(V2)越大。结合本例,在第一个∆t间隔内,电容压差变化0.4V,而第二个∆t间隔内电容压差变化∆V,0.4>>∆V,因此在相同的时间间隔∆t内,∆V大于∆V’,也就是说充电量大于放电量。这就解释了中的V2曲线的平均值不断下降的原因。
V1从常高变为交流
图 7 从常高电平到平衡信号的转换
t1时刻:V0=1.4-0.8=0.6,V∞=1.0-0.8=0.2,电容压差变化|V∞-V0|=0.4V。到达t2时,电容完成了时间为∆t的放电过程,由于放电导致的V2电压变化∆V,即t2时刻V2=0.4+∆V。
t2时刻:V0=1.0-(0.4+∆V)=0.6-∆V,V∞=1.4-0.8=0.6,电容压差变化|V∞-V0|=∆V。到达t3时,电容完成相同时间∆t的充电过程,由于充电导致的V2电压变化∆V’,到t3时刻V2=0.8+∆V-∆V’。
结合第2小节中电容充放电时间的解释,对于同一个电路,电容压差变化(|V∞-V0|)越大,充放电的时间越短,或者说相同的时间内电容压差变化(|V∞-V0|)越大,极板电压变化(V2)越大。结合本例,在第一个∆t间隔内,电容压差将变化0.4V,而第二个∆t间隔内电容压差变化∆V,前者电容压差变化远大于后者,因此在相同的时间间隔∆t内,∆V大于∆V’,也就是说放电量大于充电量。这就解释了中的V2曲线的平均值不断上升的原因。
5.信号为稳定的直流平衡
第4小节中的信号,经过长时间的变化,总会有一个时刻在一个∆t间隔内的充电量与放电量达到平衡,如图 8所示。
图 8 AC耦合传输直流平衡信号波形图
t1时刻,由于前一个时间间隔内电容放电,V2=0.6+∆V,则V0=1.0-(0.6+∆V)=0.4-∆V,V∞=1.4-0.8=0.6,电容压差变化|V∞-V0|=0.2V+∆V。到达t2时,电容完成了时间为∆t的充电过程,由于充电导致的V2变化为∆V’,则在t2时刻V2=1.0V+∆V-∆V’。
T2时刻:V0=1.4-(1.0V+∆V-∆V’),V∞=1.0-0.8=0.2V,电容压差变化|V∞-V0|=0.2-∆V+∆V’,到达t3时,电容完成了时间为∆t的放电过程,由于放电导致的V2变化为∆V’(充电和放电达到平衡,在相同时间内电压变化也相同),则在t3时刻V2=1.0-V0=0.6+∆V-∆V’+∆V’=0.6+∆V。
由于充电和放电达到平衡,因此在t1和t2时刻计算的电容压差变化应该相等,即0.2V+∆V=0.2-∆V+∆V’,即∆V’=2∆V。如果放大这个时间片段的话(夸张的画),应该如图 9所示。也就是说,在V1的每次升高或者降低变化时,电容都在进行充电或者放电过程,只不过充放电的时间与信号变化的时间比拟起来很长,以至于几乎看不到充放电对V2信号电平的影响。
图 9 AC耦合直流平衡信号局部放大
6.信号从直流平衡变为非直流平衡
V1从交流变为常低。根据前两节的分析,一旦V1变为低电平,电容就会开始放电,由于V1没有再变高的过程,放电会一直持续,一直到电容重新达到平衡状态,也就是电容压差最终稳定在0.2V。
图 10 V1变为常低后V2的变化图
V1从交流变为常高。根据前两节的分析,一旦V1变为高电平,电容就会开始充电,由于V1没有再变低的过程,充电会一直持续,一直到电容重新达到平衡状态,也就是电容压差最终稳定在0.6V。
图 11 V1变为常高后V2的变化图
7.单端信号到差分信号
事实上,经常使用AC耦合的情形多为差分信号传输,那是由于不同标准电平的差分信号直流偏置会有差别,通常需要使用AC耦合进行直流偏置的隔离。对于差分信号,如果发送端直流不平衡时,在接收端又会是什么现象呢?
根据前面各小节的分析,得到差分信号的传输波形就是很简单的了。章节4和章节6中均分析了两种数据的波形,将这两种数据分别定义为VP和VN,那么两者相减就得到差分信号的波形了,分别如图 12和图 13所示。仅从波形上看,与单端信号差别不大,仅信号的摆幅比单端信号大了一倍而已。
图 12 差分信号从交变电平到常电平
图 13 差分信号从常电平到交变电平
8.信号非直流平衡时的问题
综合上面的分析,如果信号出现非直流平衡,即常连0或者常连1的数量过多时,可能会造成两个方面的问题:
(1)超过信号的判决门限而造成误判
任何信号在接收端都会有一个判决门限,比如LVDS信号会有±100mV的门限要求,即Vdiff落在0±100mV内,接收端无法判断接收数据位逻辑0还是逻辑1,可能造成误判。从图 12可以看出,如果发送端出现常连0或者常连1时,电容会过度充电或者过度放电,使接收端的电压可能降低到判决门限(比如LVDS信号的±100mV)以内,造成误判;从图 13可以看出,发送端在常连0或者常连1后,如果出现变化bit,最开始的几个周期这些信号在接收端有摆幅很小的时刻,如果同样落在判决门限(比如LVDS信号的±100mV)以内,也会造成误判。
(2)超过器件能承受的最大电压损坏器件
从章节4可以看出,V1在常连0或者常连1后出现一个变化bit,V2会出现较大的上摆或者下摆(会到达1.2V或者0.4V),有可能会超过接收器件承受的最大电压,造成器件的损害。
基于上述两个问题的分析,得到AC耦合电路需要使用直流平衡的信号。当然直流平衡并不是要求信号如前面章节分析的0和1交替反转的那样,本文中使用这样的信号仅为分析方便。实际使用中只要0和1的数量相等或者近似相等就可以了,出现连续的0或者连续的1不可避免,但只要不太多就可以了。比如8B/10B编码,连续的“1”或“0”不超过5位,即每5个连续的“1”或“0”后必须插入一位“0”或“1”。
三、实践情况针对上述的理论分析,进行相应仿真。为了能够更好的理解数字序列经过AC耦合通路后的波形,首先仿真脉冲信号经过电容后的波形变化,
1.脉冲信号
根据图 5建立如图 14所示仿真模型,信号源为阶跃函数,上升沿1ps,摆幅0.2V,经过一个电容得到信号out1。由于电容电压的不可突变特性,在信号源in1的阶跃过程中都会出现out1电压先上升后下降到0.8V的过程,但如果电容值选择不同,out1的变化速度也不同。下面仿真了三种不同电容值时阶跃响应曲线。
图 14 阶跃仿真模型
1.1充电时间短(15ps)
选择电容C=0.1pF,计算电容的充电时间约为3RC=15ps,而信号的上升沿为1ps,这两个时间相差不多。根据仿真波形图 15所示,由于充电时间很短,导致out1的电平在瞬间没有上升到1.0V。
图 15 C=0.1pF仿真波形
1.2充电时间中等(15ns)
选择电容C为0.1nF,此时电容的充电时间约为3RC=15ns。而信号的上升沿为1ps,相差不多。在阶跃信号开始时,out1可以到达1.0V,并且在维持较短的一段时间开始下降,仿真波形分别如图 16和图 17所示。
图 16 C=0.1nF仿真波形(仿真时间500ps)
图 17 C=0.1nF仿真波形(仿真时间15ns)
1.3充电时间长(15us)
选择电容C为0.1uF,此时电容的充电时间约为3RC=15us,而信号的上升沿为1ps,相差非常大。由于充电时间过长,在很长一段时间内(比如15ns内)out1没有明显变化,仿真波形分别如图 18和图 19所示。
图 18 C=0.1uF仿真波形(仿真时间15us)
图 19 C=0.1uF仿真波形(仿真时间15ns)
2.DC平衡数字序列
将仿真模型的信号源更换为DC平衡的bit序列,序列频率为2620MHz(周期380ps),摆幅0.4V,直流偏置1.2V,同样针对三种电容值进行仿真。
图 20 DC平衡数据源仿真模型
2.1充放电时间短
仿真模型的电容C为0.1pF,充放电时间15ps。而bit序列的周期为380ps,半个周期为190ps,也就是说在信号的半个周期内,电容很快完成了充电/放电过程,out波形不能维持在固定的高电平或者低电平。最终仿真波形如图 21所示,这个电容值不适合DC平衡信号的传输。
图 21 C=0.1pF仿真波形
2.2充放电时间中等
仿真模型的电容C为0.1nF,充放电时间15ns。而bit序列半个周期为190ps,这个时间差距中等,最终仿真波形如图 22所示。out波形到达正常(直流偏置为0.8V)大约花了15ns的时间。
图 22 C=0.1nF仿真波形
2.3充放电时间长
仿真模型的电容C为0.1uF,充放电时间15us。而bit序列半个周期为190ps,这个时间差距还是非常大的,也就是说在信号半个周期内,电容充电/放电过程进行的非常缓慢,最终仿真波形如图 23所示。out波形到达正常(直流偏置为0.8V)大约花了15us的时间,在这三种情形中是最长的一个。
图 23 C=0.1uF仿真波形
3.DC非平衡数字序列
仍然使用上一节中的仿真模型,将发送bit序列更改为“11111111111111111111111111111111111111111111111111111111111111110”形式的非DC平衡序列,电容选择0.1nF。由于“0”的数量较少,导致电容放电时间短,形成图 24所示的波形,与第二章中的分析一致。这种信号在接收端就可能造成器件损坏或者接收判决错误。
图 24 非DC平衡信号仿真波形a
将发送bit序列更改为“11111111111111111111111111111111111111111111111111111111111111110101010101010101010101”形式的非DC平衡序列,电容仍选择0.1nF,out的波形如图 25所示。
图 25 非DC平衡信号仿真波形b
四、总结通过本文的分析和仿真,从电容充放电的角度,比较直观的解释了非DC平衡信号不能使用AC耦合传输的原因。同时在分析过程中,我们可以得到以下进一步引申的结论:
1.隔直电容的选择与信号频率有关。如果信号的频率较低,隔直电容不能选择的太小(充放电时间太小),以防止出现图 15所示的情形,使传输波形失真;
2.非DC平衡信号,经过AC耦合传输,信号眼图一般不会闭合,但眼图的中心电平会有偏移,眼皮变厚,眼高也会变小。
结论1根据上述章节的分析以及仿真波形显而易见;结论2进一步阐述如下:
结合第二章中的分析以及图 24和图 25的仿真波形,可以看到AC耦合后的信号会经历一个摆动调整的过程,从最原始的波形向偏置为0.8V调整。如果信号一直在这个区间内调整,那么输出信号眼图将如图 26所示,其中红框为非DC平衡信号经过AC耦合后的眼图(最坏情况),蓝色为DC平衡信号经过AC耦合后的眼图(眼高为摆幅,眼中心为直流偏置V offset)。如果信号源为图 24使用的源,那么AC耦合后的眼图与图 26中的黑色框类似,眼图中心会达到V L;如果信号源为图 25使用的源,那么AC耦合后的眼图将介于黑框和红框之间。
图 26 非DC平衡信号经过AC耦合后的眼图分析
关键词:
【世界热闻】AC耦合为何必须使用直流均衡信号?
环球热点!特斯拉AI推文引爆新热点,智能驾驶和人形机器人都要用到这一关键部件,多家公司已有布局
“560分变445分”?家长半夜偷偷查分后崩溃了:高考成绩骗了我_全球观天下
中级会计备考进入强化备考阶段 如何高效做笔记?
为什么不建议吃清江鱼?|全球热点
一级建造师市政类报名条件
世界焦点!湘潭县分水乡开展新时代文明实践志愿服务“赶集行动”
罕见!申报IPO股改前夕 实控人夫妇突然离婚!前妻持股少却有终极“话语权”
快报:海口市区2条道路积水 排水工人正在全力强排[图]
2023陕西“高考状元”谁上榜?“学区房”内卷时代什么时候会来?
机构预计:6月中国50城新房成交面积同比跌逾两成
中国轻纺城:6月25日里辅料布成交价格|环球热讯
富士康新事业发展集团公司成立,含新能源汽车业务
环球热议:俄罗斯局势反转 叛乱火速平息!现货黄金1921低位收官 买入时机来了?
今年全国快递业务量已达600亿件 当前快看
当前观点:勇士与梦想大陆礼包码大全 官方通用兑换码领取
环球今日讯!《暗黑破坏神4》快刀双灌注冰冻流推荐 快刀双灌注冰冻流什么样?
当前通讯!全球估值观察系列五十九:中证1000PE估值为33.5%分位数
信立泰(002294.SZ):创新小分子药物SAL0119药品临床试验申请获得FDA受理
金铲铲之战s9艾克阵容怎么搭配
辽宁养老金调整方案(最新)将公布,2023企退职工涨300-500元,属实吗?
好客山东丨五年来“最火热”端午山东数据亮眼 重点景区接待游客419.8万人次 今日最新
高质量发展看中国|“湘”村振兴:一只小兔子“蹦”出三亿元大产业 每日速递
焦点讯息:没有签劳动合同工作满一年可以主张赔偿吗?
山东:1-5月经济运行平稳向好 新经济投资加速布局
太阁立志传5新武将包绘卷 太阁立志传5新武将包-天天观热点
【全球速看料】可堆肥食品容器可将PFAS释放到环境中
英特尔酷睿 Ultra 1 代处理器:核显配备 128MB Foveros 3D 缓存|世界观速讯
广西经济的又一新军,将成为黑马,替代钦州?
环球视点!6月25日强美矿业萤石价格走势暂稳
西装+长裤更显气质又洋气,学时尚博主这样穿搭,高级又时髦
艾梅伯出席新片首映礼:笑容满面 状态不错 焦点速看
中衡设计子公司获得授予发明专利权通知书
李嘉诚长实集团欲夺300亿海景项目?两家内地房企齐喊“手下留情”
每日信息:十月一旅游去哪里合适_十月一旅游
世界快看点丨李嘉诚长实集团欲夺300亿海景项目?两家内地房企齐喊“手下留情”
江西农民反映稻田疑被投毒:近30亩枯死 警方介入
中国石油天然气集团有限公司原副总经理徐文荣接受审查调查|全球聚看点
红旗H6、本田雅阁、大众CC,谁才是B级车的“C位担当”
冷知识目前奇才队内效力时间最长的球员:00后阿夫迪亚
“打死2人”,印巴两年来在此首爆冲突
夏季吃7种燃脂食物-快消息
一件零食卖5毛钱,量贩零食店是新宠还是炮灰?
《忍者必须死》日服连接网络失败是什么原因 快资讯
戴眼镜提高颜值方法 戴眼镜不好看注意这3个诀窍
《宝可梦:GO》韩服连接错误是什么原因 世界今热点
通过这些令人难以置信的优惠 三星 SSD 和内存存储可享受高达 55% 的折扣|全球视点
焦点速讯:高考艺术特长生加分政策包括什么_高考艺术特长生加分政策
南大光电:筹划购买全椒南大剩余股权 26日起停牌
工信部:5月共查处“黑广播”违法犯罪案件49起 环球播资讯
罗马诺:阿斯皮利奎塔与国米谈妥2年合同,不会考虑毕尔巴鄂-今日看点
世界速读:result_from
石家庄普法:多地省委书记离京回省后的第一件事
高压电工可以做低压电工的工作吗_物业电工主要做什么工作_天天新动态
掌握25种力量诀窍把击球距离提高50码|环球即时
写给婆婆50字_写给西平
【独家】中国厨电品牌排行榜(中国奢侈品牌排行榜)
2023年6月25日HDPE价格最新行情预测|今日热门
曝小米Redmi新机低配版采用双摄方案 凑数镜头没了-当前消息
每日关注!端午期间3.9万人次重庆游两江 四川江苏陕西三地游客最多
资讯推荐:“北林香米”获批地理标志证明商标
admin是什么意思中文名(admin是什么意思) 环球即时看
快讯:天顺风能6月9日快速上涨
飞鱼星路由器双wan设置教程(飞鱼星路由器)
端午假期激发消费市场活力
当前快讯:中国农业发展银行梨树县支行 金融知识普及月宣传活动
【天天热闻】7月1日施行!四川出台首部土壤污染防治地方性法规
森林大火肆虐 加拿大野地消防员招聘难
用coredns加etcd,搭建跨平台动态服务发现 焦点信息
BASE最终一致性
焦点简讯:Kubernetes 系列:了解 k8s 架构(一)
文心一言 VS 讯飞星火 VS chatgpt (47)-- 算法导论6.1 5题
世界快资讯:如何监控文件变化,比如密码修改导致 shadow 文件变化
合肥一六八玫瑰园学校获评全国“网络学习空间人人通”培训基地学校称号-今日快讯
精选!女人带好运的微信名字三个字_女人带好运的微信名字
200亿元产业创新集群基金成功发布 苏州工行在主题教育中建新功 全球今日讯
iOS/iPadOS 17 Beta 2更新 升级需要同一Apple ID
刚刚,杭州为骑手小哥彭清林记二等功!他最新情况如何?啥时候出院? 世界消息
转需!报到证取消后,高校毕业生档案怎么转
安吉:大麓青年音乐节燃情乡村夏夜
3年省下305吨粮食这家餐厅怎么做的?“傻瓜式承诺”的必杀技
江西出台畜禽屠宰三年行动方案 世界速看料
汉字找茬王相亲之路选对正确的人攻略 天天报道
快讯:最高检发布“依法严惩毒品犯罪 强化禁毒综合治理”十大典型案事例
抖音极速版多少钱才能提现规则一览
天天热点!暑期将至,海口市儿童文化活动接踵而来
新消息丨微软:收购 B 社母公司 ZeniMax 以防止《星空》成为索尼平台独占
当前简讯:云南景东:金融支持生态资源价值转化“景东模式”初步形成
动态焦点:“限游令”下仍有不法分子钻漏洞挣钱 虎丘检察官:网游“过脸”当生意,触犯刑律担责
每日视讯:6月25日山东地区醋酸行情观望运行
建业地产:暂停支付境外债务,集中一切资源保证现有项目交付
国金证券:给予博众精工买入评级,目标价位41.58元-全球速看料
新股消息 | 童装品牌运营商永兴东润递表港交所 2022年营利双降
当前速看:人气高市场旺!滨城端午假期盛宴“嗨爆”全城
每日焦点!武汉新城两大重磅地标 正式启动!
教育部:填报高考志愿勿信小道信息,谨防上当受骗
孔德京夺得中式台球国际精英赛冠军 环球今日讯
环球快看:多名“90后”干部接受审查调查:早节不保难行远
前脸太“嚣张”,全新“胜达”港口曝光,内部座舱堪比超跑!|当前讯息
3天假期迎游客84.51万人次!江宁“创意+民俗”产品受青睐