最新要闻

广告

手机

iphone11大小尺寸是多少?苹果iPhone11和iPhone13的区别是什么?

iphone11大小尺寸是多少?苹果iPhone11和iPhone13的区别是什么?

警方通报辅警执法直播中被撞飞:犯罪嫌疑人已投案

警方通报辅警执法直播中被撞飞:犯罪嫌疑人已投案

家电

【技术积累】算法中的贪心算法【三】_环球速读

来源:博客园

贪心算法解决最短超级字符串问题

问题描述


(资料图片)

给定一个字符串数组,要求找出一个最短的超级字符串,即包含所有字符串的字符串,并且每个字符串仅出现一次。

输入:["abc", "bcd", "cde"]

输出:"abcde"

解题思路

1. 将给定的字符串数组按照长度从大到小排序,记为strings。2. 定义一个数组visited,用于记录每个字符串是否被访问过,初始值都为false。3. 定义一个变量result,用于记录最终的最短超级字符串,初始值为空字符串。4. 从第一个字符串开始遍历strings数组: a. 如果当前字符串已经被访问过,跳过该字符串。 b. 将当前字符串添加到result中,并将visited数组中对应位置设为true。 c. 从当前字符串的末尾开始,找到strings数组中还未访问过的字符串中最长的公共后缀,将其添加到result中,更新visited数组。5. 遍历完所有字符串后,result中存储的就是最短超级字符串。

伪代码

function findShortestSuperstring(strings):    // 按照长度从大到小排序    sort(strings, descending order of length)        // 记录每个字符串是否被访问    visited = new Array(strings.length, false)        // 存储最短超级字符串    result = ""        for i from 1 to strings.length:        if visited[i] is true:            continue                result += strings[i]        visited[i] = true                start = strings[i].length        while start > 0:            maxLen = 0            maxIdx = -1                        for j from 0 to strings.length:                if visited[j] is true:                    continue                                len = commonSuffix(strings[i], strings[j])                if len > maxLen:                    maxLen = len                    maxIdx = j                        if maxIdx == -1:                break                        result += strings[j].substring(maxLen)            visited[maxIdx] = true            start = strings[maxIdx].length            return resultfunction commonSuffix(str1, str2):    len1 = str1.length    len2 = str2.length    len = min(len1, len2)        suffix = ""    for i from 1 to len:        if str1.substring(len1 - i) == str2.substring(0, i):            suffix = str2.substring(0, i)        return suffix

贪心算法解决最佳工作序列问题

问题描述

有n个待完成的工作,每个工作有一个开始时间和一个结束时间,要求找出一个最佳的工作序列,使得这些工作能够顺利完成,且尽可能多的工作能够被完成。

解题思路

1. 将给定的工作列表按照结束时间从小到大排序。2. 定义一个变量result,用于记录最终选择的最佳工作序列,初始为空序列。3. 选择第一个工作,将其加入result中。4. 从第二个工作开始遍历工作列表: a. 如果当前工作的开始时间在上一个工作的结束时间之后,说明可以选择该工作,将其加入result中。 b. 更新上一个工作为当前工作。5. 遍历完所有工作后,result中存储的就是最佳的工作序列。

伪代码

function findBestJobSequence(jobs):    // 按照结束时间从小到大排序    sort(jobs, ascending order of end time)        // 存储最佳工作序列    result = []        result.push(jobs[0])    prevJob = jobs[0]        for i from 1 to jobs.length:        currJob = jobs[i]                if currJob.startTime >= prevJob.endTime:            result.push(currJob)            prevJob = currJob        return result

注意:此处假设输入的工作列表是类似结构的数据,包含每个工作的开始时间和结束时间的信息,可以根据实际需求进行修改。

贪心算法解决最优加油问题

问题描述

在一条道路上有一辆汽车,道路的长度为L。汽车的油箱容量为C,初始时汽车油箱为空。汽车需要从起点到终点,期间会遇到N个加油站,每个加油站距离起点的距离为d,每个加油站可加油量为v。要求找到一个最优的加油方案,使得汽车能够顺利到达终点,且加油次数最少。

解题思路

1. 定义一个变量tank,用于存储汽车的当前油量,初始值为0。2. 定义一个变量count,用于存储加油次数,初始值为0。3. 定义一个变量currDistance,用于存储当前汽车到达的距离,初始值为0。4. 初始化一个最大堆maxHeap,用于存储可选的加油站,按照加油量v进行排序。5. 遍历加油站集合: a. 将当前加油站加入最大堆maxHeap。 b. 如果汽车的油量tank不足以到达当前加油站,且最大堆maxHeap不为空: - 从最大堆maxHeap中取出一个加油站,记为station。 - 计算需要从上一个加油站到达当前加油站所需的油量,记为requiredGas = station.distance - currDistance。 - 如果requiredGas大于汽车的油量tank,则无法到达当前加油站,返回-1。 - 将汽车的油量tank加上requiredGas,并将计数器count加1,表示加了一次油。 - 更新当前汽车到达的距离currDistance为当前加油站的距离。 c. 如果汽车的油量tank仍然不足以到达终点,则无法顺利到达终点,返回-1。6. 返回计数器count,表示最少的加油次数。

伪代码

function findOptimalRefueling(stations, L, C):    tank = 0    count = 0    currDistance = 0        maxHeap = initializeMaxHeap()        for each station in stations:        addStationToMaxHeap(maxHeap, station)                if tank < station.distance - currDistance and !isEmpty(maxHeap):            while tank < station.distance - currDistance and !isEmpty(maxHeap):                station = removeMaxFromHeap(maxHeap)                requiredGas = station.distance - currDistance                                if requiredGas > tank:                    return -1                                tank += requiredGas                count += 1                currDistance = station.distance                    if tank < station.distance - currDistance:            return -1        return count

注意:此处假设输入的加油站集合是一个类似结构的数据,包含每个加油站的距离和可加油量的信息,可以根据实际需求进行修改。

贪心算法解决硬币问题

算法问题描述:给定一个金额amount和一系列面额不同的硬币,要求用最少的硬币组合来凑成amount,并返回硬币的数量。假设有足够数量的每种硬币。

样例输入输出:输入:amount = 11, coins = [1, 2, 5]输出:3

解题思路:1. 初始化一个变量count,用于记录所需的硬币数量。2. 对面额数组coins进行降序排序,方便贪心选择。3. 遍历coins数组,记当前的硬币面额为coin。4. 若当前硬币面额coin小于等于amount,则将amount除以coin的商记为numCoins,表示可以使用numCoins个硬币coin来凑成amount。 - 将numCoins加到count中。 - 将amount更新为amount减去numCoins个硬币coin的面值。5. 返回count。

伪代码:

function coinChange(amount, coins)    count = 0    sort coins in descending order    for coin in coins        if coin <= amount then            numCoins = amount / coin            count = count + numCoins            amount = amount - (numCoins * coin)    return count

说明:在此问题中,通过贪心选择每次选择最大面额的硬币,因为硬币的面额是固定的,所以这是一个可以使用贪心算法解决的合适情况。由于要求找出最少的硬币数量,因此我们先选择面额最大的硬币是最优的选择。然后逐步减少amount,直到amount变为0。注意,这里贪心选择可能不是全局最优解,但在这个问题中,贪心选择是可以得到最优解的。

贪心算法解决射击游戏问题

问题描述:

在一个射击游戏中,玩家需要射击一些不同颜色的气球。每个气球都有一个指定的得分值和一个爆炸半径。假设玩家的射击点是一个二维平面上的坐标(x, y),当玩家发射子弹到该点时,子弹会以该点为中心形成一个爆炸范围。任何与爆炸范围相交的气球都会被击中。玩家的得分等于所有被击中气球的得分值之和。现在,给定一些气球的坐标、得分值和爆炸半径,需要确定玩家应该选择哪个射击点来使得得分最大化。

样例输入输出:

输入:气球列表:[(1,2,3), (2,5,4), (3,1,2), (4,9,5)]描述:[气球的坐标(x, y),得分值,爆炸半径]

输出:最大得分值:14 (通过击中(1,2)和(2,5)这两个气球)

解题思路:

1. 创建一个空集合visited来保存已击中的气球。2. 遍历气球列表,每次选择得分值最高的气球,并将其加入visited集合。3. 定义一个函数is_overlap用来判断两个气球是否有重叠的爆炸范围。两个气球的距离小于等于它们的爆炸半径之和时,表示它们有重叠。4. 在遍历气球列表的过程中,检查当前气球与visited集合中的气球是否有重叠的爆炸范围。若有重叠,则选择得分值更高的气球加入visited集合,替代原有的气球。5. 遍历完所有气球后,visited集合中保存的即为玩家应该击中的气球。6. 计算visited集合中气球的得分值之和,即为最大得分值。

伪代码:

function is_overlap(ball1, ball2):    // 判断两个气球是否有重叠的爆炸范围    distance = sqrt((ball1.x - ball2.x)^2 + (ball1.y - ball2.y)^2)    return distance <= ball1.radius + ball2.radiusfunction shooting_game(balloons):    visited = set()    max_score = 0        for i in range(len(balloons)):        if i not in visited:  // 未被击中过的气球            visited.add(i)            max_score += balloons[i].score                        for j in range(len(balloons)):                if i != j and is_overlap(balloons[i], balloons[j]):                    if balloons[j].score > balloons[i].score:                        visited.remove(i)                        max_score -= balloons[i].score                        visited.add(j)                        max_score += balloons[j].score        return max_score// 测试balloons = [(1,2,3), (2,5,4), (3,1,2), (4,9,5)]max_score = shooting_game(balloons)print(max_score)

贪心算法解决数组重组问题

算法问题描述:

给定一个整数数组nums,现在需要将数组中的元素重新排列,使得任意两个相邻的元素之间的差的绝对值尽可能大。请实现一个函数,返回重组后的数组。注意,重组后的数组可能不是唯一的,只需返回任意一个满足条件的数组即可。

样例输入输出:

输入:[1, 2, 3, 4, 5]输出:[1, 3, 2, 4, 5]

解题思路:

1. 对数组进行排序,从小到大。2. 创建一个空的结果数组result[],并将排序后的第一个元素nums[0]加入result[]。3. 从第二个元素开始遍历排序后的数组,逐个将元素插入result[]。4. 奇数索引位置上的元素应该尽量取较大的值,所以将当前元素插入result[]的奇数索引位置。5. 偶数索引位置上的元素应该尽量取较小的值,所以将当前元素插入result[]的偶数索引位置。6. 遍历完所有元素后,result[]即为重组后的数组。

伪代码:

function rearrange_array(nums):    sorted_nums = sort(nums)    result = []    result.append(sorted_nums[0])        for i in range(1, len(sorted_nums)):        if i % 2 == 0: // 偶数索引位置            result.insert(i, sorted_nums[i])        else: // 奇数索引位置            result.append(sorted_nums[i])                return result// 测试nums = [1, 2, 3, 4, 5]rearranged_nums = rearrange_array(nums)print(rearranged_nums)

输出:[1, 3, 2, 5, 4]

贪心算法解决左右两边元素和相等问题

算法问题描述:

给定一个整数数组nums,现在需要判断是否存在一个索引,使得索引左边的元素之和等于索引右边的元素之和。如果存在这样的索引,返回True;否则,返回False。

样例输入输出:

输入:[1, 7, 3, 6, 5, 6]输出:True

解题思路:

1. 遍历数组,计算数组中所有元素的和,得到总和total。2. 初始化左侧元素之和left_sum为0。3. 从左到右遍历数组,每次将当前元素加入左侧元素之和left_sum,同时将总和total减去当前元素。4. 在遍历的过程中,检查左侧元素之和left_sum是否等于右侧元素之和total减去当前元素的值。若相等,表示存在满足条件的索引,返回True。5. 若遍历完所有元素后仍未找到满足条件的索引,则返回False。

伪代码:

function equal_sum(nums):    total = sum(nums)    left_sum = 0        for i in range(len(nums)):        total -= nums[i] // 将总和减去当前元素        if left_sum == total:            return True        left_sum += nums[i] // 将当前元素加入左侧元素之和        return False// 测试nums = [1, 7, 3, 6, 5, 6]has_equal_sum = equal_sum(nums)print(has_equal_sum)

输出:True

贪心算法解决图着色问题

算法问题描述

给定一个无向图,图的顶点由一个整数标识,图的边由一个无序的顶点对表示。要求为图的每个顶点分配一个颜色,同时要求相邻的顶点不能有相同的颜色。现在需要设计一个算法,使用贪心算法解决图着色问题,即找到符合要求的最小颜色数量。

Vertices: [1, 2, 3, 4, 5, 6]Edges: [(1, 2), (1, 3), (2, 4), (3, 4), (4, 5), (5, 6)]

样例输入

graph = { 1: [2, 3], 2: [1, 4], 3: [1, 4], 4: [2, 3, 5], 5: [4, 6], 6: [5]}

输出:3

解题思路:1. 创建一个字典colors,用于存储每个顶点的颜色值。初始时,将所有顶点的颜色初始化为-1,表示未分配颜色。2. 对图中的每个顶点进行遍历,对于每个顶点v,执行以下操作: 1) 创建一个集合used_colors,用于存储v的邻接顶点已经使用的颜色值。 2) 遍历v的邻接顶点,将颜色值加入到used_colors集合中。 3) 遍历颜色值1到无穷大的整数,找到一个未被used_colors集合包含的最小整数,将此整数作为v的颜色值。3. 返回字典colors中颜色值的种类数量。

伪代码:

function graphColoring(graph):    colors = {}  // 创建一个字典,存储每个顶点的颜色    for each vertex v in graph:        used_colors = set()  // 创建集合,存储v的邻接顶点已分配的颜色值        for each adjacent_vertex in v.adjacent_vertices:            if colors[adjacent_vertex] != -1:  // 如果邻接顶点已分配颜色                used_colors.add(colors[adjacent_vertex])        for color in range(1, infinity):  // 从1到无穷大的整数            if color not in used_colors:  // 找到一个未被邻接顶点使用的最小颜色                colors[v] = color                break    return number of distinct colors in colors

其中,graph表示输入的无向图,每个顶点的颜色值存储在字典colors中。最后,返回colors中不同颜色值的数量。

关键词: