最新要闻

广告

手机

iphone11大小尺寸是多少?苹果iPhone11和iPhone13的区别是什么?

iphone11大小尺寸是多少?苹果iPhone11和iPhone13的区别是什么?

警方通报辅警执法直播中被撞飞:犯罪嫌疑人已投案

警方通报辅警执法直播中被撞飞:犯罪嫌疑人已投案

家电

动态物体追踪 每日简讯

来源:博客园

动态物体追踪

闲话

我个人是比较喜欢捣鼓一些程序设计,算法之类的。但毕竟是人工智能专业的,电子类大赛也必须去打,起初是导师让我来打这个比赛,后面发现还是很有挑战,很有意思的。一开始我对全国大学生电子设计大赛真的一点不懂,之前也没了解过。后来听导师说,我们团队做的都是些控制类题,这我还算能接受。如果纯硬件,让我画电路,那我水平真的不太行。


(资料图)

我拿到的是2021年国赛题——基于互联网的摄像测量系统。要求(1)是做两个独立摄像头出来,我直接用树莓派连摄像头,这也很简单。之前我也给树莓派装了系统,并且在树莓派里面装了OpenCV,后面肯定会用到机器视觉。要求(2)就是我这篇要写到的,两个摄像节点要实时检测摆动的激光笔,然后把激光笔的轮廓检测到并框出。

我一开始觉得,这也太没难度了吧,我随便一个二值化处理,然后对比度框一下。可是我看题目看到后面的时候我发现事情没那么简单!说明(4)中有一句话:拍摄背景为一般实验室场景,背景物体静止即可,不得要求额外处理;如果实验室背景很嘈杂的话,我的激光笔不是比较难检测,我用二值化处理了一下,果然并没有把背景和激光笔区分出来,我后续一顿操作都没有好的结果,虽然能把笔检测出来,但是如果有和笔相似的像素也会被误判。

然后我尝试用内置函数轮廓检测直接去用drawCoutours()画出来轮廓,效果不太行,还是那句话,背景太杂了,检测的轮廓太多了,检测的结果不是单一的激光笔。如果背景是纯白的话,那确实没什么难度!可惜如果背景嘈杂的话,检测一个物体还要精准的框出来确实不是那么容易。

之后我尝试读取视频的第一帧,把笔的样子保存下来,然后去匹配笔,实现单目标匹配。效果虽然还行,但是不确定太大了,如果是在比赛,匹配的结果不是那么好,直接原地退役。毕竟后面要算激光笔的摆长和角度。在检测上面不能有误差。

后面我找到一种比较好的方法,就是两帧画面作差。因为激光笔是不断摆动的,背景都是静止的,那差出来的像素就是激光笔的像素,然后我去把它用findCountours()框起来!这个效果在本地实现起来是很好的。然后我就去码通信部分了,我就用socket写了个客户端和服务端。然后发现大问题了!因为用的是帧差法,如果通信有一点网络波动两帧差的比较多,那么框出来的框就特别的“大“。如果出现这种情况,那误差……如果在本地的话我觉得这种方法真的是最优了!不管再多嘈杂的环境都没什么影响,就算放一万支一模一样的激光笔,我也能检测出动的那一支。只是有点可惜通信的话,不能采用这个方法。

后面我问了下学长,学长说背景肯定要是白色的呀,我当时的心情……我辛苦那么久想去处理背景的问题,没想到比赛的时候背景肯定要是全白!

那我还是回归老方法,直接去用内置函数去检测轮廓,不过有几个小细节。框的时候,如果有面积太小或者太大的噪点,直接给它Pass掉。还有就是检测的轮廓如果长宽比不是像笔那样的比例,也Pass掉。这样误差几乎降为0。

匹配法(效果差)

代码给我删掉了,不贴出来了

帧差法(本机效果好)

import cv2def fitter_img(frame):    gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 转成灰度图像    blur = cv2.GaussianBlur(gray, (5, 5), 0) # 高斯模糊    t, thresh = cv2.threshold(blur, 20, 255, cv2.THRESH_BINARY) # 二值化    dilated = cv2.dilate(thresh, None, iterations=3) # 膨胀    return dilatedcap = cv2.VideoCapture(0)ret, frame1 = cap.read()ret, frame2 = cap.read()while cap.isOpened():    diff = cv2.absdiff(frame1,frame2)    mask = fitter_img(diff)    # 寻找轮廓    contours, her = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)    for i in contours:        x, y, w, h = cv2.boundingRect(i)        if cv2.contourArea(i) < 200:            continue        cv2.rectangle(frame1, (x, y), (x + w, y + h), (0, 0, 255), 2)    cv2.imshow("diff", diff)    cv2.imshow("frame1", frame1)    # cv2.imshow("mask", mask)    # 前面一帧转成后面一帧    frame1 = frame2    ret, frame2 = cap.read()    if cv2.waitKey(1) & 0xFF == ord("q"):        breakcap.release()cv2.destroyAllWindows()

直接检测轮廓

这段代码我直接写在socket的服务端的,我直接贴出来。

import socketimport timeimport cv2import numpydef ReceiveVideo():    # IP地址"0.0.0.0"为等待客户端连接    address = ("0.0.0.0", 8002)    # 建立socket对象,参数意义见https://blog.csdn.net/rebelqsp/article/details/22109925    # socket.AF_INET:服务器之间网络通信    # socket.SOCK_STREAM:流式socket , for TCP    s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)    # 将套接字绑定到地址, 在AF_INET下,以元组(host,port)的形式表示地址.    s.bind(address)    # 开始监听TCP传入连接。参数指定在拒绝连接之前,操作系统可以挂起的最大连接数量。该值至少为1,大部分应用程序设为5就可以了。    s.listen(1)    def recvall(sock, count):        buf = b""  # buf是一个byte类型        while count:            # 接受TCP套接字的数据。数据以字符串形式返回,count指定要接收的最大数据量.            newbuf = sock.recv(count)            if not newbuf: return None            buf += newbuf            count -= len(newbuf)        return buf    # 接受TCP连接并返回(conn,address),其中conn是新的套接字对象,可以用来接收和发送数据。addr是连接客户端的地址。    # 没有连接则等待有连接    conn, addr = s.accept()    print("connect from:" + str(addr))    while 1:        start = time.time()  # 用于计算帧率信息        length = recvall(conn, 16)  # 获得图片文件的长度,16代表获取长度        stringData = recvall(conn, int(length))  # 根据获得的文件长度,获取图片文件        data = numpy.frombuffer(stringData, numpy.uint8)  # 将获取到的字符流数据转换成1维数组        decimg = cv2.imdecode(data, cv2.IMREAD_COLOR)  # 将数组解码成图像        # cv2.imshow("SERVER", decimg)  # 显示图像        img = decimg        # 进行下一步处理        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)        t, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)        coutours, h = cv2.findContours(binary, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)        for i in coutours:            # 排除掉面积过大或过小的区域            if cv2.contourArea(i) < 1000 or cv2.contourArea(i) > 5000:                continue            x, y, w, h = cv2.boundingRect(i)            # 排除不正确的面积比            if h < 2 * w or h > 8 * w: continue            cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 2)        cv2.imshow("img", img)        # 将帧率信息回传,主要目的是测试可以双向通信        end = time.time()        seconds = end - start        fps = 1 / seconds;        conn.send(bytes(str(int(fps)), encoding="utf-8"))        k = cv2.waitKey(30) & 0xff        if k == ord("q"):            break    s.close()    cv2.destroyAllWindows()if __name__ == "__main__":    ReceiveVideo()

客户端代码

上面有服务端的代码,怎么能少了客户端的呢?

import socketimport cv2import numpyimport timeimport sysdef SendVideo():    # 建立sock连接    # address要连接的服务器IP地址和端口号    address = ("192.168.31.110", 8002)    try:        # 建立socket对象,参数意义见https://blog.csdn.net/rebelqsp/article/details/22109925        # socket.AF_INET:服务器之间网络通信        # socket.SOCK_STREAM:流式socket , for TCP        sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)        # 开启连接        sock.connect(address)    except socket.error as msg:        print(msg)        sys.exit(1)    # 建立图像读取对象    capture = cv2.VideoCapture(0)    # 读取一帧图像,读取成功:ret=1 frame=读取到的一帧图像;读取失败:ret=0    ret, frame = capture.read()    # 压缩参数,后面cv2.imencode将会用到,对于jpeg来说,15代表图像质量,越高代表图像质量越好为 0-100,默认95    encode_param = [int(cv2.IMWRITE_JPEG_QUALITY), 15]    while ret:        # 停止0.1S 防止发送过快服务的处理不过来,如果服务端的处理很多,那么应该加大这个值        time.sleep(0.01)        # cv2.imencode将图片格式转换(编码)成流数据,赋值到内存缓存中;主要用于图像数据格式的压缩,方便网络传输        # ".jpg"表示将图片按照jpg格式编码。        result, imgencode = cv2.imencode(".jpg", frame, encode_param)        # 建立矩阵        data = numpy.array(imgencode)        # 将numpy矩阵转换成字符形式,以便在网络中传输        stringData = data.tostring()        # 先发送要发送的数据的长度        # ljust() 方法返回一个原字符串左对齐,并使用空格填充至指定长度的新字符串        sock.send(str.encode(str(len(stringData)).ljust(16)));        # 发送数据        sock.send(stringData);        # 读取服务器返回值        receive = sock.recv(1024)        if len(receive): print(str(receive, encoding="utf-8"))        # 读取下一帧图片        ret, frame = capture.read()        if cv2.waitKey(10) == 27:            break    sock.close()if __name__ == "__main__":    SendVideo()

总结

其实我当时想这个背景问题,想了很久,用了10几种方法吧,但是其他的方法简直太不科学了!还是老老实实用库函数吧!不过我真的是喜欢帧差法,效果真的很棒!可惜通信太拉了!

效果图

关键词: