最新要闻
- 芒果超媒:8月3日融券净卖出13.1万股,连续3日累计净卖出27.61万股
- 中国发布丨公安部:涉及户籍、签证等26项措施8月底前全部实施
- 中国利郎(01234.HK)将于8月16日举行董事会会议以审批中期业绩
- 房子变相降价?广州连续发文,鼓励“送面积”!
- 京东收购永辉?双双回应……
- 加仓意愿升温 私募“进攻”瞄准顺周期板块
- 动物世界aPp主犯判决结果_动物世界app
- 夏雨、于谦和富大龙,正在娱乐圈外的世界里成为人生赢家
- 枣庄技师学院党委副书记、院长陶晓军带队走访慰问驻枣部队
- 古今中外名人知耻而后勇的事例 古今中外
- Gartner:服务器虚拟化市场指南:中国篇
- 齐齐哈尔分局查哈阳派出所民警及时劝阻一起电信诈骗案 避免七万元财产损失
- 衡水:今天开始降雨再次上线 周末局地有中到大雨
- 解局 | 万科曲线拿地与合作者们
- 走!去看场大运比赛
- 海河流域33座大型水库全力迎峰御洪
广告
手机
![请求支援!涿州23000多安置群众急需这些物资](http://imgs.hnmdtv.com/2022/0610/20220610024400214.jpg)
请求支援!涿州23000多安置群众急需这些物资
![回归有望?格林伍德仍在曼联官网球队阵容当中,号码为11号](http://img.kaijiage.com/2022/0610/20220610024802976.jpg)
回归有望?格林伍德仍在曼联官网球队阵容当中,号码为11号
- 请求支援!涿州23000多安置群众急需这些物资
- 回归有望?格林伍德仍在曼联官网球队阵容当中,号码为11号
- 崇启海推进人民调解工作一体化发展
- 7月数据出炉!广州楼市,离回暖只差一个政策!
- 景嘉微:8月3日融券卖出17.19万股,融资融券余额17.11亿元
- 转扩!涿州市公布接受资金物资捐赠方式
家电
医疗知识图谱问答——文本分类解析
(相关资料图)
前言
Neo4j的数据库构建完成后,现在就是要实现医疗知识的解答功能了。因为是初版,这里的问题解答不会涉及深度学习,目前只是一个条件查询的过程。而这个过程包括对问题的关键词拆解分类,然后提取词语和类型去图数据库查询,最后就是根据查询结果和问题类型组装语言完成回答,那么以下就是完成这个过程的全部代码流程了。
环境
这里所需的环境除了前面提到的外,还需要ahocorasick库,用于从问题中提取关键词。另一个是colorama,用于给输出面板文字美化的库。
编码
1. 问答面板
from colorama import init,Fore,Style,Backfrom classifier import Classifierfrom parse import Parsefrom answer import Answerclass ChatRobot: def __init__(self): init(autoreset=True) print("====================================") print(Back.BLUE+"欢迎进入智慧医疗问答面板!") print("====================================") def main(self, question): print("") default_answer = "您好,小北知识有限,暂时回答不上来,正在努力迭代中!" final_classify = Classifier().classify(question) parse_sql = Parse().main(final_classify) final_answer = Answer().main(parse_sql) if not final_answer: return default_answer return "\n\n".join(final_answer)if __name__ == "__main__": robot = ChatRobot() while 1: print(" ") question = input("您问:") if "关闭" in question: print("") print("小北说:", "好的,已经关闭了哦,欢迎您下次提问~") break; answer = robot.main(question) print(Fore.LIGHTRED_EX+"小北答:", Fore.GREEN + answer)
2. 问题归类
import ahocorasickclass Classifier: def __init__(self): # print("开始初始化:", time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())) self.checks_wds = [i.strip() for i in open("dict/checks.txt", encoding="utf-8", mode="r") if i.strip()] self.departments_wds = [i.strip() for i in open("dict/departments.txt", encoding="utf-8", mode="r") if i.strip()] self.diseases_wds = [i.strip() for i in open("dict/diseases.txt", encoding="utf-8", mode="r") if i.strip()] self.drugs_wds = [i.strip() for i in open("dict/drugs.txt", encoding="utf-8", mode="r") if i.strip()] self.foods_wds = [i.strip() for i in open("dict/foods.txt", encoding="utf-8", mode="r") if i.strip()] self.producers_wds = [i.strip() for i in open("dict/producers.txt", encoding="utf-8", mode="r") if i.strip()] self.symptoms_wds = [i.strip() for i in open("dict/symptoms.txt", encoding="utf-8", mode="r") if i.strip()] self.features_wds = set(self.checks_wds+self.departments_wds+self.diseases_wds+self.drugs_wds+self.foods_wds+self.producers_wds+self.symptoms_wds) self.deny_words = [name.strip() for name in open("dict/deny.txt", encoding="utf-8", mode="r") if name.strip()] # actree 从输入文本中提取出指定分词表中的词 self.actree = self.build_actree(list(self.features_wds)) # 给每个词创建类型词典(相当慢的操作) self.wds_dict = self.build_words_dict() # print("给每个词创建类型词典结束:", time.strftime("%Y-%m-%d %H:%M:%S", time.localtime())) # 问句疑问词 self.symptom_qwds = ["症状", "表征", "现象", "症候", "表现"] self.cause_qwds = ["原因", "成因", "为什么", "怎么会", "怎样才", "咋样才", "怎样会", "如何会", "为啥", "为何", "如何才会", "怎么才会", "会导致", "会造成"] self.acompany_qwds = ["并发症", "并发", "一起发生", "一并发生", "一起出现", "一并出现", "一同发生", "一同出现", "伴随发生", "伴随", "共现"] self.food_qwds = ["饮食", "饮用", "吃", "食", "伙食", "膳食", "喝", "菜", "忌口", "补品", "保健品", "食谱", "菜谱", "食用", "食物", "补品"] self.drug_qwds = ["药", "药品", "用药", "胶囊", "口服液", "炎片"] self.prevent_qwds = ["预防", "防范", "抵制", "抵御", "防止", "躲避", "逃避", "避开", "免得", "逃开", "避开", "避掉", "躲开", "躲掉", "绕开", "怎样才能不", "怎么才能不", "咋样才能不", "咋才能不", "如何才能不", "怎样才不", "怎么才不", "咋样才不", "咋才不", "如何才不", "怎样才可以不", "怎么才可以不", "咋样才可以不", "咋才可以不", "如何可以不", "怎样才可不", "怎么才可不", "咋样才可不", "咋才可不", "如何可不"] self.lasttime_qwds = ["周期", "多久", "多长时间", "多少时间", "几天", "几年", "多少天", "多少小时", "几个小时", "多少年"] self.cureway_qwds = ["怎么治疗", "如何医治", "怎么医治", "怎么治", "怎么医", "如何治", "医治方式", "疗法", "咋治", "怎么办", "咋办", "咋治"] self.cureprob_qwds = ["多大概率能治好", "多大几率能治好", "治好希望大么", "几率", "几成", "比例", "可能性", "能治", "可治", "可以治", "可以医"] self.easyget_qwds = ["易感人群", "容易感染", "易发人群", "什么人", "哪些人", "感染", "染上", "得上"] self.check_qwds = ["检查", "检查项目", "查出", "检查", "测出", "试出"] self.belong_qwds = ["属于什么科", "属于", "什么科", "科室"] self.cure_qwds = ["治疗什么", "治啥", "治疗啥", "医治啥", "治愈啥", "主治啥", "主治什么", "有什么用", "有何用", "用处", "用途", "有什么好处", "有什么益处", "有何益处", "用来", "用来做啥", "用来作甚", "需要", "要"] """构造actree,加速过滤""" def build_actree(self, wordlist): actree = ahocorasick.Automaton() for index, word in enumerate(wordlist): actree.add_word(word, (index, word)) actree.make_automaton() return actree # 构建特征词属性 def build_words_dict(self): words_dict = {} check_words = set(self.checks_wds) department_words = set(self.departments_wds) disease_words = set(self.diseases_wds) drug_words = set(self.drugs_wds) food_words = set(self.foods_wds) producer_words = set(self.producers_wds) symptom_words = set(self.symptoms_wds) for word in self.features_wds: words_dict[word] = [] if word in check_words: words_dict[word].append("check") if word in department_words: words_dict[word].append("department") if word in disease_words: words_dict[word].append("disease") if word in drug_words: words_dict[word].append("drug") if word in food_words: words_dict[word].append("food") if word in producer_words: words_dict[word].append("producer") if word in symptom_words: words_dict[word].append("symptom") return words_dict # 根据输入返回问题类型 def classify(self, sent): # 最终输入给解析器的字典 data = {} region_words = [] lists = self.actree.iter(sent) for ii in lists: cur_word = ii[1][1] region_words.append(cur_word) # {"职业黑变病": ["diseases"], "倒睫": ["diseases", "symptom"]} final_dict = {i_name: self.wds_dict.get(i_name) for i_name in region_words} data["args"] = final_dict question_type = "other" questions_type = [] # ["diseases", "diseases", "symptom"] type = [] for i_type in final_dict.values(): type += i_type # 判断type中是否有指定类型, 提出的问题是否包含指定的修饰词,给问题定类型 # 1. 如提问词是否出现状态词语,那就是问某种疾病会出现什么症状 if self.check_word_exist(self.symptom_qwds, sent) and ("disease" in type): question_type = "disease_symptom" questions_type.append(question_type) # 根据症状问疾病 if self.check_word_exist(self.symptom_qwds, sent) and ("symptom" in type): question_type = "symptom_disease" questions_type.append(question_type) # 原因 if self.check_word_exist(self.cause_qwds, sent) and ("disease" in type): question_type = "disease_cause" questions_type.append(question_type) # 并发症 if self.check_word_exist(self.acompany_qwds, sent) and ("disease" in type): question_type = "disease_acompany" questions_type.append(question_type) # 推荐食品 if self.check_word_exist(self.food_qwds, sent) and "disease" in type: deny_status = self.check_word_exist(self.deny_words, sent) if deny_status: question_type = "disease_not_food" else: question_type = "disease_do_food" questions_type.append(question_type) # 已知食物找疾病 if self.check_word_exist(self.food_qwds + self.cure_qwds, sent) and "food" in type: deny_status = self.check_word_exist(self.deny_words, sent) if deny_status: question_type = "food_not_disease" else: question_type = "food_do_disease" questions_type.append(question_type) # 推荐药品 if self.check_word_exist(self.drug_qwds, sent) and "disease" in type: question_type = "disease_drug" questions_type.append(question_type) # 药品治啥病 if self.check_word_exist(self.cure_qwds, sent) and "drug" in type: question_type = "drug_disease" questions_type.append(question_type) # 疾病接受检查项目 if self.check_word_exist(self.check_qwds, sent) and "disease" in type: question_type = "disease_check" questions_type.append(question_type) # 已知检查项目查相应疾病 if self.check_word_exist(self.check_qwds + self.cure_qwds, sent) and "check" in type: question_type = "check_disease" questions_type.append(question_type) # 症状防御 if self.check_word_exist(self.prevent_qwds, sent) and "disease" in type: question_type = "disease_prevent" questions_type.append(question_type) # 疾病医疗周期 if self.check_word_exist(self.lasttime_qwds, sent) and "disease" in type: question_type = "disease_lasttime" questions_type.append(question_type) # 疾病治疗方式 if self.check_word_exist(self.cureway_qwds, sent) and "disease" in type: question_type = "disease_cureway" questions_type.append(question_type) # 疾病治愈可能性 if self.check_word_exist(self.cureprob_qwds, sent) and "disease" in type: question_type = "disease_cureprob" questions_type.append(question_type) # 疾病易感染人群 if self.check_word_exist(self.easyget_qwds, sent) and "disease" in type: question_type = "disease_easyget" questions_type.append(question_type) # 若没有查到相关的外部查询信息,那么则将该疾病的描述信息返回 if questions_type == [] and "disease" in type: questions_type = ["disease_desc"] # 若没有查到相关的外部查询信息,那么则将该疾病的描述信息返回 if questions_type == [] and "symptom" in type: questions_type = ["symptom_disease"] # 将多个分类结果进行合并处理,组装成一个字典 data["question_types"] = questions_type return data def check_word_exist(self, word_list, words): for item in word_list: if item in words: return True return False
3. 类型解析(查询组装)
class Parse: def main(self, classify): entity = classify["args"] questions_type = classify["question_types"] entity_dict = self.entity_transform(entity) sqls = [] for question in questions_type: sql_dict = {} sql_dict["qustion_type"] = question sql_dict["sql"] = [] sql = [] if question == "disease_symptom": sql = self.sql_transfer(question, entity_dict.get("disease")) elif question == "symptom_disease": sql = self.sql_transfer(question, entity_dict.get("symptom")) elif question == "disease_cause": sql = self.sql_transfer(question, entity_dict.get("disease")) elif question == "disease_acompany": sql = self.sql_transfer(question, entity_dict.get("disease")) elif question == "disease_not_food": sql = self.sql_transfer(question, entity_dict.get("disease")) elif question == "disease_do_food": sql = self.sql_transfer(question, entity_dict.get("disease")) elif question == "food_not_disease": sql = self.sql_transfer(question, entity_dict.get("food")) elif question == "food_do_disease": sql = self.sql_transfer(question, entity_dict.get("food")) elif question == "disease_drug": sql = self.sql_transfer(question, entity_dict.get("disease")) elif question == "drug_disease": sql = self.sql_transfer(question, entity_dict.get("drug")) elif question == "disease_check": sql = self.sql_transfer(question, entity_dict.get("disease")) elif question == "check_disease": sql = self.sql_transfer(question, entity_dict.get("check")) elif question == "disease_prevent": sql = self.sql_transfer(question, entity_dict.get("disease")) elif question == "disease_lasttime": sql = self.sql_transfer(question, entity_dict.get("disease")) elif question == "disease_cureway": sql = self.sql_transfer(question, entity_dict.get("disease")) elif question == "disease_cureprob": sql = self.sql_transfer(question, entity_dict.get("disease")) elif question == "disease_easyget": sql = self.sql_transfer(question, entity_dict.get("disease")) elif question == "disease_desc": sql = self.sql_transfer(question, entity_dict.get("disease")) if sql: sql_dict["sql"] = sql sqls.append(sql_dict) return sqls def sql_transfer(self, question_type, entities): # 查询语句 sql = [] # 查询疾病的原因 if question_type == "disease_cause": sql = ["MATCH (m:Diseases) where m.name = "{0}" return m.name, m.cause".format(i) for i in entities] # 查询疾病的防御措施 elif question_type == "disease_prevent": sql = ["MATCH (m:Diseases) where m.name = "{0}" return m.name, m.prevent".format(i) for i in entities] # 查询疾病的持续时间 elif question_type == "disease_lasttime": sql = ["MATCH (m:Diseases) where m.name = "{0}" return m.name, m.cure_lasttime".format(i) for i in entities] # 查询疾病的治愈概率 elif question_type == "disease_cureprob": sql = ["MATCH (m:Diseases) where m.name = "{0}" return m.name, m.cured_prob".format(i) for i in entities] # 查询疾病的治疗方式 elif question_type == "disease_cureway": sql = ["MATCH (m:Diseases) where m.name = "{0}" return m.name, m.cure_way".format(i) for i in entities] # 查询疾病的易发人群 elif question_type == "disease_easyget": sql = ["MATCH (m:Diseases) where m.name = "{0}" return m.name, m.easy_get".format(i) for i in entities] # 查询疾病的相关介绍 elif question_type == "disease_desc": sql = ["MATCH (m:Diseases) where m.name = "{0}" return m.name, m.desc".format(i) for i in entities] # 查询疾病有哪些症状 elif question_type == "disease_symptom": sql = [ "MATCH (m:Diseases)-[r:has_symptoms]->(n:Symptoms) where m.name = "{0}" return m.name, r.name, n.name".format( i) for i in entities] # 查询症状会导致哪些疾病 elif question_type == "symptom_disease": sql = [ "MATCH (m:Diseases)-[r:has_symptoms]->(n:Symptoms) where n.name = "{0}" return m.name, r.name, n.name".format( i) for i in entities] # 查询疾病的并发症 elif question_type == "disease_acompany": sql1 = [ "MATCH (m:Diseases)-[r:acompany_with]->(n:Symptoms) where m.name = "{0}" return m.name, r.name, n.name".format( i) for i in entities] sql2 = [ "MATCH (m:Diseases)-[r:acompany_with]->(n:Symptoms) where n.name = "{0}" return m.name, r.name, n.name".format( i) for i in entities] sql = sql1 + sql2 # 查询疾病的忌口 elif question_type == "disease_not_food": sql = ["MATCH (m:Diseases)-[r:not_eat]->(n:Foods) where m.name = "{0}" return m.name, r.name, n.name".format(i) for i in entities] # 查询疾病建议吃的东西 elif question_type == "disease_do_food": sql1 = [ "MATCH (m:Diseases)-[r:do_eat]->(n:Foods) where m.name = "{0}" return m.name, r.name, n.name".format(i) for i in entities] sql2 = [ "MATCH (m:Diseases)-[r:recomment_eat]->(n:Foods) where m.name = "{0}" return m.name, r.name, n.name".format( i) for i in entities] sql = sql1 + sql2 # 已知忌口查疾病 elif question_type == "food_not_disease": sql = ["MATCH (m:Diseases)-[r:not_eat]->(n:Foods) where n.name = "{0}" return m.name, r.name, n.name".format(i) for i in entities] # 已知推荐查疾病 elif question_type == "food_do_disease": sql1 = [ "MATCH (m:Diseases)-[r:do_eat]->(n:Foods) where n.name = "{0}" return m.name, r.name, n.name".format(i) for i in entities] sql2 = [ "MATCH (m:Diseases)-[r:recomment_eat]->(n:Foods) where n.name = "{0}" return m.name, r.name, n.name".format( i) for i in entities] sql = sql1 + sql2 # 查询疾病常用药品-药品别名记得扩充 elif question_type == "disease_drug": sql1 = [ "MATCH (m:Diseases)-[r:common_drug]->(n:Drugs) where m.name = "{0}" return m.name, r.name, n.name".format( i) for i in entities] sql2 = [ "MATCH (m:Diseases)-[r:recommand_drug]->(n:Drugs) where m.name = "{0}" return m.name, r.name, n.name".format( i) for i in entities] sql = sql1 + sql2 # 已知药品查询能够治疗的疾病 elif question_type == "drug_disease": sql1 = [ "MATCH (m:Diseases)-[r:common_drug]->(n:Drugs) where n.name = "{0}" return m.name, r.name, n.name".format( i) for i in entities] sql2 = [ "MATCH (m:Diseases)-[r:recommand_drug]->(n:Drugs) where n.name = "{0}" return m.name, r.name, n.name".format( i) for i in entities] sql = sql1 + sql2 # 查询疾病应该进行的检查 elif question_type == "disease_check": sql = [ "MATCH (m:Diseases)-[r:need_check]->(n:Checks) where m.name = "{0}" return m.name, r.name, n.name".format( i) for i in entities] # 已知检查查询疾病 elif question_type == "check_disease": sql = [ "MATCH (m:Diseases)-[r:need_check]->(n:Checks) where n.name = "{0}" return m.name, r.name, n.name".format( i) for i in entities] return sql def entity_transform(self, entity): entity_dict = {} for args, types in entity.items(): for type in types: if type in entity_dict: entity_dict[type] = [args] else: entity_dict[type] = [] entity_dict[type].append(args) return entity_dict
4. 数据查询(回答组装)
from py2neo import Graph, Nodeclass Answer: def __init__(self): self.neo4j = Graph("bolt://localhost:7687", auth=("neo4j", "beiqiaosu123456")) self.num_limit = 20 def main(self, question_parse): answers_final = [] for item in question_parse: question_type = item["qustion_type"] sqls = item["sql"] answer = [] for sql in sqls: data = self.neo4j.run(sql) answer+=data.data() final_answer = self.answer_prettify(question_type, answer) if final_answer: answers_final.append(final_answer) return answers_final """根据对应的qustion_type,调用相应的回复模板""" def answer_prettify(self, question_type, answers): final_answer = [] if not answers: return "" if question_type == "disease_symptom": desc = [i["n.name"] for i in answers] subject = answers[0]["m.name"] final_answer = "{0}的症状包括:{1}".format(subject, ";".join(list(set(desc))[:self.num_limit])) elif question_type == "symptom_disease": desc = [i["m.name"] for i in answers] subject = answers[0]["n.name"] final_answer = "症状{0}可能染上的疾病有:{1}".format(subject, ";".join(list(set(desc))[:self.num_limit])) elif question_type == "disease_cause": desc = [i["m.cause"] for i in answers] subject = answers[0]["m.name"] final_answer = "{0}可能的成因有:{1}".format(subject, ";".join(list(set(desc))[:self.num_limit])) elif question_type == "disease_prevent": desc = [i["m.prevent"] for i in answers] subject = answers[0]["m.name"] final_answer = "{0}的预防措施包括:{1}".format(subject, ";".join(list(set(desc))[:self.num_limit])) elif question_type == "disease_lasttime": desc = [i["m.cure_lasttime"] for i in answers] subject = answers[0]["m.name"] final_answer = "{0}治疗可能持续的周期为:{1}".format(subject, ";".join(list(set(desc))[:self.num_limit])) elif question_type == "disease_cureway": desc = [";".join(i["m.cure_way"]) for i in answers] subject = answers[0]["m.name"] final_answer = "{0}可以尝试如下治疗:{1}".format(subject, ";".join(list(set(desc))[:self.num_limit])) elif question_type == "disease_cureprob": desc = [i["m.cured_prob"] for i in answers] subject = answers[0]["m.name"] final_answer = "{0}治愈的概率为(仅供参考):{1}".format(subject, ";".join(list(set(desc))[:self.num_limit])) elif question_type == "disease_easyget": desc = [i["m.easy_get"] for i in answers] subject = answers[0]["m.name"] final_answer = "{0}的易感人群包括:{1}".format(subject, ";".join(list(set(desc))[:self.num_limit])) elif question_type == "disease_desc": desc = [i["m.desc"] for i in answers] subject = answers[0]["m.name"] final_answer = "{0},熟悉一下:{1}".format(subject, ";".join(list(set(desc))[:self.num_limit])) elif question_type == "disease_acompany": desc1 = [i["n.name"] for i in answers] desc2 = [i["m.name"] for i in answers] subject = answers[0]["m.name"] desc = [i for i in desc1 + desc2 if i != subject] final_answer = "{0}的症状包括:{1}".format(subject, ";".join(list(set(desc))[:self.num_limit])) elif question_type == "disease_not_food": desc = [i["n.name"] for i in answers] subject = answers[0]["m.name"] final_answer = "{0}忌食的食物包括有:{1}".format(subject, ";".join(list(set(desc))[:self.num_limit])) elif question_type == "disease_do_food": do_desc = [i["n.name"] for i in answers if i["r.name"] == "可以吃"] recommand_desc = [i["n.name"] for i in answers if i["r.name"] == "推荐吃"] subject = answers[0]["m.name"] final_answer = "{0}宜食的食物包括有:{1}\n推荐食谱包括有:{2}".format(subject, ";".join(list(set(do_desc))[:self.num_limit]), ";".join(list(set(recommand_desc))[:self.num_limit])) elif question_type == "food_not_disease": desc = [i["m.name"] for i in answers] subject = answers[0]["n.name"] final_answer = "患有{0}的人最好不要吃{1}".format(";".join(list(set(desc))[:self.num_limit]), subject) elif question_type == "food_do_disease": desc = [i["m.name"] for i in answers] subject = answers[0]["n.name"] final_answer = "患有{0}的人建议多试试{1}".format(";".join(list(set(desc))[:self.num_limit]), subject) elif question_type == "disease_drug": desc = [i["n.name"] for i in answers] subject = answers[0]["m.name"] final_answer = "{0}通常的使用的药品包括:{1}".format(subject, ";".join(list(set(desc))[:self.num_limit])) elif question_type == "drug_disease": desc = [i["m.name"] for i in answers] subject = answers[0]["n.name"] final_answer = "{0}主治的疾病有{1},可以试试".format(subject, ";".join(list(set(desc))[:self.num_limit])) elif question_type == "disease_check": desc = [i["n.name"] for i in answers] subject = answers[0]["m.name"] final_answer = "{0}通常可以通过以下方式检查出来:{1}".format(subject, ";".join(list(set(desc))[:self.num_limit])) elif question_type == "check_disease": desc = [i["m.name"] for i in answers] subject = answers[0]["n.name"] final_answer = "通常可以通过{0}检查出来的疾病有{1}".format(subject, ";".join(list(set(desc))[:self.num_limit])) return final_answer
写在最后
以上就是这个医疗知识问答机器人的全部代码了,从上面的问答里也能看出,回答得还是很生硬。因为这就只是一个程序化得思维导图,所以修改完善空间还是很大,这个就要后期用深度学习得方式对分类解析部分进行改动。
关键词:
-
-
-
-
医疗知识图谱问答——文本分类解析
热烈祝贺西高投投资企业入选“2023中国独角兽企业”
8月2日内蒙古地区氢氟酸市场价格暂稳
为何涿州码头镇被洪水围困?一图看懂
请求支援!涿州23000多安置群众急需这些物资
密春雷再被执行5亿,览海杠杆收购拖累“胡润富豪”
宝鸡市亢景怡入选2023年全国“新时代好少年”
山东探索“跨境电商+产业带”模式 让本土产品“组团出海”
Win11默认禁用TLS 1.0/1.1 鼓励用户采用现代协议
“楼顶建豪华泳池”,广州番禺再通报
芒果超媒:8月3日融券净卖出13.1万股,连续3日累计净卖出27.61万股
回归有望?格林伍德仍在曼联官网球队阵容当中,号码为11号
瑞幸咖啡:2023年二季度总净收入超62亿元,同比增长88%
沙特航空正式开通吉达—北京新航线,预计之后将开通更多航线
牙龈疼挂什么科(牙龈肿流脓包是去看牙科还是口腔科)
杭州公交“上新”,多项功能升级!
手机要有信号了!涿州架起高空基站 情况好起来了
崇启海推进人民调解工作一体化发展
蓝思科技:8月3日融资买入963.29万元,融资融券余额11.21亿元
小桥流水人家上一句是 小桥流水人家上一句
建霖家居:蹊跷的净利增长
品味作文开头结尾大全 品味作文
芭比电影遭遇困境 中东国家拒绝上映
央行引导房贷首付、利率下行,对股市有影响吗?
千佛手治疗仪多少钱一台_千佛手治疗仪
惠誉下调美国信用评级:财政债务问题不断恶化
注册码论坛 免费注册论坛
PLAYSTUDIOS(MYPS.US):2023年Q2财报实现营收7779.3万美元
美股三大指数震荡整理 热门中概股普涨
“产品+渠道”双轮驱动 盐津铺子上半年扣非净利同比翻倍
7月数据出炉!广州楼市,离回暖只差一个政策!
寿险能不能退保?有什么影响呢?
港股午评:恒指涨0.99%恒生科指涨1.96%,影视娱乐股表现出色
美企考虑为中国特供AI显卡 性能能降80%
波罗的海干散货运价指数结束五连涨
淘汰赛连胜两场,中国队晋级大运会团体决赛
又一家银行宣布倒闭!已是今年内第五家…
中国发布丨公安部:涉及户籍、签证等26项措施8月底前全部实施
华尔街日报:智能眼镜“Ray-Ban Stories”活跃用户不到10%
142家中企闯入世界500强:新能源车企“上位”,互联网军团“添新”
景嘉微:8月3日融券卖出17.19万股,融资融券余额17.11亿元
京津城际开通运营15年 累计发送旅客3.4亿人次
聪明钱“减仓”超50亿 重点减持银行与汽车整车行业
中国利郎(01234.HK)将于8月16日举行董事会会议以审批中期业绩
上半年我国可再生能源装机历史性超过煤电
天孚通信:8月3日融券卖出23.75万股,融资融券余额6.25亿元
“卡努”拐点出现 向东北转向明显
“薪金+租金+分红+现金”富了老乡“钱袋子” 新模式走出共富路
东安县白牙市镇紫水社区:健康义诊社区行 真情服务暖人心
山东省青岛市城阳区 数字赋能优化执法服务
苏州东吴中西医结合医院 卵巢炎的原因
转扩!涿州市公布接受资金物资捐赠方式
黑龙江省牡丹江市防汛应急响应提高到三级
多部门联合发布税收优惠政策——支持重点群体创业就业
改造提升传统产业 筑牢产业体系基底
每经热评|自主品牌车企“反向输出技术” 仅仅是开始
百余作品打造立体三山五园文化景观
湖南省总工会赴长沙宣讲省工会十七大精神并调研工会工作
救援队:河北涿州救援难度高于北京 详情如何?
美达股份:公司产品可应用于下游许多领域,其中包含汽车用品,这属于公司其中一个研发方向
脱贫人口等人员从事个体经营,可享受这些税收政策
姚振华被打 宝能最新发声!
抓好农业防灾减灾 制定“一户一策”帮扶办法
西共体:军事干预是应对尼日尔局势的最后选择
上半年近四百个重点项目全部开工 青岛促实体经济提质增效
古茗捐款500万元用于支持受灾地区的应急救援及灾后重建工作
“2023成都大运会”男排四分之一决赛今日(8月4日)竞赛日程
8月3日上市公司晚间公告一览
一线丨天津暴雨各财险公司已接到理赔报案4145件,报损金额4203.29万
上半年全省大数据领域项目投资整体情况较好
大麦粉、绿豆等销售渐入佳境
奔驰斯宾特四驱车研发 冲浪爱好者专享
LK-99室温超导,见证历史,激发万万亿市场,还是又一轮乌龙?
地方国资亲自下场做VC,半年投资上百家医疗企业,为何这么拼?
腾讯大模型终于来了
第7届南博会首批展品今天顺利通关运抵昆明
成都大运会丨中国队斩获跆拳道项目一金一银一铜
深圳瑞捷(300977.SZ):公司已在城市更新领域积累丰富的实践经验,先后参与多个改造等项目
沃森生物:公司及高管团队在企业经营过程中严格遵守法律法规和廉洁自律要求
国家发改委、财政部、央行、税务总局联合发声!看10大要点
大运会-中国女篮轻取中国台北 晋级决赛对阵日本
上半年我国机器人产业总体保持稳定增长态势
扎克伯格,正在“马斯克化”
中央气象台8月2日10时继续发布暴雨蓝色预警
这16个有荤有素的家常菜,夏天家里聚餐正好凑一桌,喜欢就收好
以“迅”应“汛” 市住建系统全力筑牢“安全堤”
房子变相降价?广州连续发文,鼓励“送面积”!
炖鸽子的正确做法?
26项措施发布,事关每个人!
薪火相传!近70名“红巷苗苗”暑期活跃在义务讲解一线
21家房企报名争夺!深圳首宗“竞现房”宅地34亿元摇号成交
上半年全省大数据领域项目投资整体情况较好
折叠屏手机为什么只分三星和其他品牌?Galaxy Z Fold5和Flip5给出答案
京东收购永辉?双双回应……
暴雨洪涝后如何做好个人健康防护?一图看懂
融侨集团截至7月末逾期金融机构贷款5.12亿元
腾讯大模型终于来了
眼角处长斑是什么原因(眼角下长斑是什么原因)
猪肚鸡炖多久?
《逐梦》第三集:用青春和热血守卫祖国