最新要闻
- 【环球快播报】“爱妻”来了!理想L7的二排空间有多大?史无前例的“皇后座”感受下
- 当前速递!影像机皇预定!小米13 Ultra堆料惊人:四颗5000万像素主摄
- 【环球报资讯】日本60岁宅男看动漫被打断对父母下狠手 啃老30年:网友吐槽二次元危害大
- 焦点快报!丙种球蛋白被炒到上万元 真的需要囤一点吗?
- 20款理想ONE新功能上线:支持3.5kW外放电、配套设备仅2999元
- 今日快讯:拖死锤子 罗永浩回应遭郑刚炮轰获圈内人士力挺:喜欢乱搞小三关系
- 国产屏真香!苹果也喜欢:iPhone 15/15 Plus要用京东方屏
- 一加11砍掉8GB丐版!员工:一加用户都喜欢大内存版本
- 环球快资讯丨复刻iPhone 14 Pro!乐视手机S1 Pro入网:搭载国产芯 这真不卡
- 世界速读:Mini LED屏加入高端笔记本阵营!硬刚OLED
- 世界热讯:特斯拉股东要求董事会做好接班准备:以防失去马斯克
- 全球观察:投资人郑刚炮轰罗永浩拖死了锤子 罗永浩回应:严重失实
- 能流畅用4年不卡的骁龙8系手机来了!一加11下周首销:3999元
- 热讯:老雷筹拍《角斗士2》
- 靳东宋佳主演电视剧《纵有疾风起》热播:moto razr折叠屏抢镜
- 即时:普及150W秒充 真我GT Neo3手机12GB大内存版直降600元
广告
手机
iphone11大小尺寸是多少?苹果iPhone11和iPhone13的区别是什么?
警方通报辅警执法直播中被撞飞:犯罪嫌疑人已投案
- iphone11大小尺寸是多少?苹果iPhone11和iPhone13的区别是什么?
- 警方通报辅警执法直播中被撞飞:犯罪嫌疑人已投案
- 男子被关545天申国赔:获赔18万多 驳回精神抚慰金
- 3天内26名本土感染者,辽宁确诊人数已超安徽
- 广西柳州一男子因纠纷杀害三人后自首
- 洱海坠机4名机组人员被批准为烈士 数千干部群众悼念
家电
Python+matplotlib实现折线图的美化
(相关资料图)
1. 导入包
import pandas as pdimport matplotlib.pyplot as pltimport matplotlib.ticker as tickerimport matplotlib.gridspec as gridspec
2. 获得数据
file_id = "1yM_F93NY4QkxjlKL3GzdcCQEnBiA2ltB"‘Python学习交流群:748989764 ’url = f"https://drive.google.com/uc?id={file_id}"df = pd.read_csv(url, index_col=0)df
数据长得是这样的:
3. 对数据做一些预处理
按照需要,对数据再做一些预处理,代码及效果如下:
home_df = df.copy()home_df = home_df.melt(id_vars = ["date", "home_team_name", "away_team_name"])home_df["venue"] = "H"home_df.rename(columns = {"home_team_name":"team", "away_team_name":"opponent"}, inplace = True)home_df.replace({"variable":{"home_team_xG":"xG_for", "away_team_xG":"xG_ag"}}, inplace = True)
away_df = df.copy()away_df = away_df.melt(id_vars = ["date", "away_team_name", "home_team_name"])away_df["venue"] = "A"away_df.rename(columns = {"away_team_name":"team", "home_team_name":"opponent"}, inplace = True)away_df.replace({"variable":{"away_team_xG":"xG_for", "home_team_xG":"xG_ag"}}, inplace = True)
df = pd.concat([home_df, away_df]).reset_index(drop = True)df
4. 画图
# ---- Filter the dataY_for = df[(df["team"] == "Lazio") & (df["variable"] == "xG_for")]["value"].reset_index(drop = True)Y_ag = df[(df["team"] == "Lazio") & (df["variable"] == "xG_ag")]["value"].reset_index(drop = True)X_ = pd.Series(range(len(Y_for)))# ---- Compute rolling averageY_for = Y_for.rolling(window = 5, min_periods = 0).mean() # min_periods is for partial avg.Y_ag = Y_ag.rolling(window = 5, min_periods = 0).mean()
fig, ax = plt.subplots(figsize = (7,3), dpi = 200)ax.plot(X_, Y_for)ax.plot(X_, Y_ag)
使用matplotlib倒是可以快速把图画好了,但是太丑了。接下来进行优化。
4.1 优化:添加点
这里为每一个数据添加点
fig, ax = plt.subplots(figsize = (7,3), dpi = 200)# --- Remove spines and add gridlinesax.spines["left"].set_visible(False)ax.spines["top"].set_visible(False)ax.spines["right"].set_visible(False)ax.grid(ls = "--", lw = 0.5, color = "#4E616C")# --- The dataax.plot(X_, Y_for, marker = "o")ax.plot(X_, Y_ag, marker = "o")
4.2 优化:设置刻度
fig, ax = plt.subplots(figsize = (7,3), dpi = 200)# --- Remove spines and add gridlinesax.spines["left"].set_visible(False)ax.spines["top"].set_visible(False)ax.spines["right"].set_visible(False)ax.grid(ls = "--", lw = 0.25, color = "#4E616C")# --- The dataax.plot(X_, Y_for, marker = "o", mfc = "white", ms = 5)ax.plot(X_, Y_ag, marker = "o", mfc = "white", ms = 5)# --- Adjust tickers and spine to match the style of our gridax.xaxis.set_major_locator(ticker.MultipleLocator(2)) # ticker every 2 matchdaysxticks_ = ax.xaxis.set_ticklabels([x - 1 for x in range(0, len(X_) + 3, 2)])# This last line outputs# [-1, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35]# and we mark the tickers every two positions.ax.xaxis.set_tick_params(length = 2, color = "#4E616C", labelcolor = "#4E616C", labelsize = 6)ax.yaxis.set_tick_params(length = 2, color = "#4E616C", labelcolor = "#4E616C", labelsize = 6)ax.spines["bottom"].set_edgecolor("#4E616C")
4.3 优化:设置填充
fig, ax = plt.subplots(figsize = (7,3), dpi = 200)
Python学习交流群:748989764
# --- Remove spines and add gridlinesax.spines["left"].set_visible(False)ax.spines["top"].set_visible(False)ax.spines["right"].set_visible(False)ax.grid(ls = "--", lw = 0.25, color = "#4E616C")# --- The dataax.plot(X_, Y_for, marker = "o", mfc = "white", ms = 5)ax.plot(X_, Y_ag, marker = "o", mfc = "white", ms = 5)# --- Fill betweenax.fill_between(x = X_, y1 = Y_for, y2 = Y_ag, alpha = 0.5)# --- Adjust tickers and spine to match the style of our gridax.xaxis.set_major_locator(ticker.MultipleLocator(2)) # ticker every 2 matchdaysxticks_ = ax.xaxis.set_ticklabels([x - 1 for x in range(0, len(X_) + 3, 2)])ax.xaxis.set_tick_params(length = 2, color = "#4E616C", labelcolor = "#4E616C", labelsize = 6)ax.yaxis.set_tick_params(length = 2, color = "#4E616C", labelcolor = "#4E616C", labelsize = 6)ax.spines["bottom"].set_edgecolor("#4E616C")
4.4 优化:设置填充颜色
1.当橙色线更高时,希望填充为橙色。但是上面的还无法满足,这里再优化一下.
fig, ax = plt.subplots(figsize = (7,3), dpi = 200)# --- Remove spines and add gridlinesax.spines["left"].set_visible(False)ax.spines["top"].set_visible(False)ax.spines["right"].set_visible(False)ax.grid(ls = "--", lw = 0.25, color = "#4E616C")# --- The dataax.plot(X_, Y_for, marker = "o", mfc = "white", ms = 5)ax.plot(X_, Y_ag, marker = "o", mfc = "white", ms = 5)# --- Fill between# Identify points where Y_for > Y_agpos_for = (Y_for > Y_ag)ax.fill_between(x = X_[pos_for], y1 = Y_for[pos_for], y2 = Y_ag[pos_for], alpha = 0.5)pos_ag = (Y_for <= Y_ag)ax.fill_between(x = X_[pos_ag], y1 = Y_for[pos_ag], y2 = Y_ag[pos_ag], alpha = 0.5)# --- Adjust tickers and spine to match the style of our gridax.xaxis.set_major_locator(ticker.MultipleLocator(2)) # ticker every 2 matchdaysxticks_ = ax.xaxis.set_ticklabels([x - 1 for x in range(0, len(X_) + 3, 2)])ax.xaxis.set_tick_params(length = 2, color = "#4E616C", labelcolor = "#4E616C", labelsize = 6)ax.yaxis.set_tick_params(length = 2, color = "#4E616C", labelcolor = "#4E616C", labelsize = 6)ax.spines["bottom"].set_edgecolor("#4E616C")
上面的图出现异常,再修改一下:
X_aux = X_.copy()X_aux.index = X_aux.index * 10 # 9 aux points in between each matchlast_idx = X_aux.index[-1] + 1X_aux = X_aux.reindex(range(last_idx))X_aux = X_aux.interpolate()# --- Aux series for the xG created (Y_for)Y_for_aux = Y_for.copy()Y_for_aux.index = Y_for_aux.index * 10last_idx = Y_for_aux.index[-1] + 1Y_for_aux = Y_for_aux.reindex(range(last_idx))Y_for_aux = Y_for_aux.interpolate()# --- Aux series for the xG conceded (Y_ag)Y_ag_aux = Y_ag.copy()Y_ag_aux.index = Y_ag_aux.index * 10last_idx = Y_ag_aux.index[-1] + 1Y_ag_aux = Y_ag_aux.reindex(range(last_idx))Y_ag_aux = Y_ag_aux.interpolate()fig, ax = plt.subplots(figsize = (7,3), dpi = 200)# --- Remove spines and add gridlinesax.spines["left"].set_visible(False)ax.spines["top"].set_visible(False)ax.spines["right"].set_visible(False)ax.grid(ls = "--", lw = 0.25, color = "#4E616C")# --- The datafor_ = ax.plot(X_, Y_for, marker = "o", mfc = "white", ms = 5)ag_ = ax.plot(X_, Y_ag, marker = "o", mfc = "white", ms = 5)# --- Fill betweenfor index in range(len(X_aux) - 1): # Choose color based on which line"s on top if Y_for_aux.iloc[index + 1] > Y_ag_aux.iloc[index + 1]: color = for_[0].get_color() else: color = ag_[0].get_color() # Fill between the current point and the next point in pur extended series. ax.fill_between([X_aux[index], X_aux[index+1]], [Y_for_aux.iloc[index], Y_for_aux.iloc[index+1]], [Y_ag_aux.iloc[index], Y_ag_aux.iloc[index+1]], color=color, zorder = 2, alpha = 0.2, ec = None)# --- Adjust tickers and spine to match the style of our gridax.xaxis.set_major_locator(ticker.MultipleLocator(2)) # ticker every 2 matchdaysxticks_ = ax.xaxis.set_ticklabels([x - 1 for x in range(0, len(X_) + 3, 2)])ax.xaxis.set_tick_params(length = 2, color = "#4E616C", labelcolor = "#4E616C", labelsize = 6)ax.yaxis.set_tick_params(length = 2, color = "#4E616C", labelcolor = "#4E616C", labelsize = 6)ax.spines["bottom"].set_edgecolor("#4E616C")
5. 把功能打包成函数
上面的样子都还不错啦,接下来把这些东西都打包成一个函数。方便后面直接出图。
def plot_xG_rolling(team, ax, window = 5, color_for = "blue", color_ag = "orange", data = df): """ This function creates a rolling average xG plot for a given team and rolling window. team (str): The team"s name ax (obj): a Matplotlib axes. window (int): The number of periods for our rolling average. color_for (str): A hex color code for xG created. color_af (str): A hex color code for xG conceded. data (DataFrame): our df with the xG data. """ # -- Prepping the data home_df = data.copy() home_df = home_df.melt(id_vars = ["date", "home_team_name", "away_team_name"]) home_df["venue"] = "H" home_df.rename(columns = {"home_team_name":"team", "away_team_name":"opponent"}, inplace = True) home_df.replace({"variable":{"home_team_xG":"xG_for", "away_team_xG":"xG_ag"}}, inplace = True) away_df = data.copy() away_df = away_df.melt(id_vars = ["date", "away_team_name", "home_team_name"]) away_df["venue"] = "A" away_df.rename(columns = {"away_team_name":"team", "home_team_name":"opponent"}, inplace = True) away_df.replace({"variable":{"away_team_xG":"xG_for", "home_team_xG":"xG_ag"}}, inplace = True) df = pd.concat([home_df, away_df]).reset_index(drop = True) # ---- Filter the data Y_for = df[(df["team"] == team) & (df["variable"] == "xG_for")]["value"].reset_index(drop = True) Y_ag = df[(df["team"] == team) & (df["variable"] == "xG_ag")]["value"].reset_index(drop = True) X_ = pd.Series(range(len(Y_for))) if Y_for.shape[0] == 0: raise ValueError(f"Team {team} is not present in the DataFrame") # ---- Compute rolling average Y_for = Y_for.rolling(window = 5, min_periods = 0).mean() # min_periods is for partial avg. Y_ag = Y_ag.rolling(window = 5, min_periods = 0).mean() # ---- Create auxiliary series for filling between curves X_aux = X_.copy() X_aux.index = X_aux.index * 10 # 9 aux points in between each match last_idx = X_aux.index[-1] + 1 X_aux = X_aux.reindex(range(last_idx)) X_aux = X_aux.interpolate() # --- Aux series for the xG created (Y_for) Y_for_aux = Y_for.copy() Y_for_aux.index = Y_for_aux.index * 10 last_idx = Y_for_aux.index[-1] + 1 Y_for_aux = Y_for_aux.reindex(range(last_idx)) Y_for_aux = Y_for_aux.interpolate() # --- Aux series for the xG conceded (Y_ag) Y_ag_aux = Y_ag.copy() Y_ag_aux.index = Y_ag_aux.index * 10 last_idx = Y_ag_aux.index[-1] + 1 Y_ag_aux = Y_ag_aux.reindex(range(last_idx)) Y_ag_aux = Y_ag_aux.interpolate() # --- Plotting our data # --- Remove spines and add gridlines ax.spines["left"].set_visible(False) ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) ax.grid(ls = "--", lw = 0.25, color = "#4E616C") # --- The data for_ = ax.plot(X_, Y_for, marker = "o", mfc = "white", ms = 4, color = color_for) ag_ = ax.plot(X_, Y_ag, marker = "o", mfc = "white", ms = 4, color = color_ag) # --- Fill between for index in range(len(X_aux) - 1): # Choose color based on which line"s on top if Y_for_aux.iloc[index + 1] > Y_ag_aux.iloc[index + 1]: color = for_[0].get_color() else: color = ag_[0].get_color() # Fill between the current point and the next point in pur extended series. ax.fill_between([X_aux[index], X_aux[index+1]], [Y_for_aux.iloc[index], Y_for_aux.iloc[index+1]], [Y_ag_aux.iloc[index], Y_ag_aux.iloc[index+1]], color=color, zorder = 2, alpha = 0.2, ec = None) # --- Ensure minimum value of Y-axis is zero ax.set_ylim(0) # --- Adjust tickers and spine to match the style of our grid ax.xaxis.set_major_locator(ticker.MultipleLocator(2)) # ticker every 2 matchdays xticks_ = ax.xaxis.set_ticklabels([x - 1 for x in range(0, len(X_) + 3, 2)]) ax.xaxis.set_tick_params(length = 2, color = "#4E616C", labelcolor = "#4E616C", labelsize = 6) ax.yaxis.set_tick_params(length = 2, color = "#4E616C", labelcolor = "#4E616C", labelsize = 6) ax.spines["bottom"].set_edgecolor("#4E616C") # --- Legend and team name Y_for_last = Y_for.iloc[-1] Y_ag_last = Y_ag.iloc[-1] # -- Add the team"s name team_ = ax.text( x = 0, y = ax.get_ylim()[1] + ax.get_ylim()[1]/20, s = f"{team}", color = "#4E616C", va = "center", ha = "left", size = 7 ) # -- Add the xG created label for_label_ = ax.text( x = X_.iloc[-1] + 0.75, y = Y_for_last, s = f"{Y_for_last:,.1f} xGF", color = color_for, va = "center", ha = "left", size = 6.5 ) # -- Add the xG conceded label ag_label_ = ax.text( x = X_.iloc[-1] + 0.75, y = Y_ag_last, s = f"{Y_ag_last:,.1f} xGA", color = color_ag, va = "center", ha = "left", size = 6.5 )
6.测试函数
file_id = "1yM_F93NY4QkxjlKL3GzdcCQEnBiA2ltB"url = f"https://drive.google.com/uc?id={file_id}"df = pd.read_csv(url, index_col=0)
再设置更加丰富的颜色:
fig = plt.figure(figsize=(5, 8), dpi = 200, facecolor = "#EFE9E6")ax1 = plt.subplot(411, facecolor = "#EFE9E6")ax2 = plt.subplot(412, facecolor = "#EFE9E6")ax3 = plt.subplot(413, facecolor = "#EFE9E6")ax4 = plt.subplot(414, facecolor = "#EFE9E6")plot_xG_rolling("Sassuolo", ax1, color_for = "#00A752", color_ag = "black", data = df)plot_xG_rolling("Lazio", ax2, color_for = "#87D8F7", color_ag = "#15366F", data = df)plot_xG_rolling("Hellas Verona", ax3, color_for = "#153aab", color_ag = "#fdcf41", data = df)plot_xG_rolling("Empoli", ax4, color_for = "#00579C", color_ag = "black", data = df)plt.tight_layout()
-
Python+matplotlib实现折线图的美化
1 导入包importpandasaspdimportmatplotlib pyplotaspltimportmatplotlib tickerastickerimport
来源: Python+matplotlib实现折线图的美化
当前快讯:vue-router的使用
全球最资讯丨Unity初始界面设计与人物移动代码
学习笔记——书城项目之“我的订单”功能
环球百事通!一些学习编程的优质网站
学习笔记——书城项目第六阶段之去结账功能的准备工作、去结账功能的实现
【环球快播报】“爱妻”来了!理想L7的二排空间有多大?史无前例的“皇后座”感受下
精彩看点:Docker轻量级可视化工具Portainer
热点评![概率论与数理统计]笔记:2.5 随机变量函数的分布
全球简讯:express学会CRUD
当前速递!影像机皇预定!小米13 Ultra堆料惊人:四颗5000万像素主摄
今日报丨B站地区限制破解方法
【环球报资讯】日本60岁宅男看动漫被打断对父母下狠手 啃老30年:网友吐槽二次元危害大
Spring IOC官方文档学习笔记(七)之Bean Definition继承
焦点快报!丙种球蛋白被炒到上万元 真的需要囤一点吗?
20款理想ONE新功能上线:支持3.5kW外放电、配套设备仅2999元
当前快讯:一种inlineHook检测方案
今日快讯:拖死锤子 罗永浩回应遭郑刚炮轰获圈内人士力挺:喜欢乱搞小三关系
国产屏真香!苹果也喜欢:iPhone 15/15 Plus要用京东方屏
一加11砍掉8GB丐版!员工:一加用户都喜欢大内存版本
HTML超文本标记语言1
环球快资讯丨复刻iPhone 14 Pro!乐视手机S1 Pro入网:搭载国产芯 这真不卡
世界速读:Mini LED屏加入高端笔记本阵营!硬刚OLED
环球观焦点:NOI2003 文本编辑器 题解
世界热讯:特斯拉股东要求董事会做好接班准备:以防失去马斯克
全球观察:投资人郑刚炮轰罗永浩拖死了锤子 罗永浩回应:严重失实
能流畅用4年不卡的骁龙8系手机来了!一加11下周首销:3999元
热讯:老雷筹拍《角斗士2》
靳东宋佳主演电视剧《纵有疾风起》热播:moto razr折叠屏抢镜
即时:普及150W秒充 真我GT Neo3手机12GB大内存版直降600元
天天速看:女子表白领导被拒后每天在公司摸鱼 还免被裁引热议:网友吐槽道德绑架
[Docker]使用Docker开启一个MariaDB服务并在宿主机里访问服务
当前速读:小鹏P7喜提开年首次OTA:新增“神仙级”NGP车道定位功能
极其反常!欧洲多国冬天像夏天:多处滑雪胜地闹雪荒
专业鼻腔护理 海元素生理性盐水鼻腔喷雾器60ml 12.23元包邮
特斯拉再降价!Model3创历史新低:你还等“Model 2”吗?
专家建议不要生吃可生食鸡蛋:有健康风险
全球微资讯!以小见大:由低代码的发展,窥企业数智化转型之路
关注:阿凡达2回本!卡梅隆确认拍续集:剧透《阿凡达3/4/5》剧情/进度
【天天报资讯】e平台3.0首车 比亚迪海豚12月热销2.6万:本田飞度彻底被打趴
最新消息:投资人郑刚炮轰罗永浩:拖死锤子、不懂感恩,将联合发起回购
宝岛眼镜旗舰店抄底:镜框+防蓝光近视镜片99元包邮
开五天 一天降一万老车主泪奔维权!特斯拉国产车降价为冲量 拒绝补偿
当前快讯:全球变暖加剧:专家称本世纪末全球三分之二冰川或消失
全球简讯:21岁网红庄慕卿车祸身亡 逆向行驶还翘头致两车相撞4人遇难:网友称禁止摩托车
环球微速讯:Codeforces Round #842 (Div. 2) A-E
焦点速读:使用KVM创建OEL虚拟机
别只用来发电了 太阳能制氢突破!10倍效率 成本还更低
全球即时看!全球首个全功能无线底座问世:干掉线缆 满足4K/60Hz带宽
今头条!豆瓣9.6分 《中国奇谭》凭什么让国漫再次封神?
全球要闻:Intel Arc A750显卡深入测试:性能RTX 3060、功耗RTX 3070
今日快讯:内网渗透-PTH&PTK&PTT哈希票据传递
天天微速讯:官方批准ARJ21国产客机改货机!最大运力10吨
天天微资讯!3.2K/165hz屏!联想第四代ThinkBook 16P发布: 配独特触点接口
每日速讯:汤姆·汉克斯谈好莱坞裙带关系:本就是家族产业
【天天播资讯】雷蛇灵刃18游戏本发布:18寸240Hz大屏、RTX 4090显卡替代台式机
特斯拉再降价 Model 3创历史新低!老车主亏哭了 山顶买车血亏6万
耗资两亿的《三体》 在《中国奇谭》面前毫无价值
内网信息收集
今日观点!day03-模块化编程
今日最新!vue中$children的理解
每日焦点!TCL华星展示最新带鱼屏模组:暗处无限接近0nit
天天热议:矿卡的阴影已经过去了 板卡一哥华硕率先表态:显卡库存已正常
全球观速讯丨遇到查酒驾猛打方向盘 结果巧了:直接一步到位
全球快资讯:无视油车 特斯拉Model Y成英国12月最畅销汽车
世界播报:售价超2万元!世界首款真无线电视现身CES:电池供电不插线
记录--微信调用jssdk全流程详解
最新:LaTeX 进阶语法
世界观热点:国人不再迷信日本车 日产2022年累计销量105万:同比暴跌超1/5
当前热讯:又见白菜价 梅捷2TB SSD硬盘到手554元(每GB不到3毛)
HTC Vive XR眼镜发布:双2K屏、配有可拆卸电池
最资讯丨四川一地再现土坑酸菜 工人用脚踩 网友无奈:眼不见为净
每日视讯:Redmi K60/K60 Pro对比拆解:做工用料良心!性价比刚刚的
【吐槽贴】项目经理的进阶日常:项目要收尾了,我却慌了
当前滚动:三亚民宿老板称一个月赚回三年亏损:20万一晚酒店已售罄
焦点关注:谁说微星不做AMD显卡了!RX 7900终于亮相 只是有点敷衍
天天快播:红魔8 Pro系列即将再次开卖:3999元起 首销曾被抢购一空
云南发现2.44亿年前“奇异罗平龙”化石:身长超半米 像蜥蜴
马化腾服不服?李彦宏:百度研发强度、投入国内最牛 比腾讯高
通讯!Git管理版本详细教程
世界快播:手工实现一个ORM小框架
【天天播资讯】AIRIOT答疑第5期|如何使用低代码业务流引擎?
亲测有效! Bypass V1.15.5 12306分流抢票助手 for Windows
每日视讯:比亚迪仰望:那年我翻山跨海 横扫车圈无对手
信息:联想Yoga Book 9i双屏笔记本发布:两块13寸2.8K触摸屏
当前视讯!AMD锐龙7000智酷版上架!6核不过1549元 可能有惊喜
天天观焦点:女子吐槽智能电视会员乱象:看什么都收费
环球速递!国产秀肌肉!全球首款8K激光电视来了:海信打造、画质细数毛
【世界快播报】保存用户登录状态之Session和JWT
【世界热闻】three.js场景地形导出到物理引擎
网站变更检测、监控、警报丨WebSite-Watcher功能简介
基于Python的K-Means遥感影像聚类
苹果iOS app上架流程
世界观察:《阿凡达2》接招!国产科幻大片走出国门 《流浪地球2》将在澳新上映
消息!特斯拉国产车型大幅降价 副总裁陶琳回应:坚持以成本定价
Win11 2023开年更新Build 25272发布:干掉中文版大BUG!更加流畅稳定
特斯拉降价 网友翻出蔚来李斌2年前视频:价格稳定是对用户负责
天天新消息丨智能电视视频会员一充再充!体验太差了
全球即时:gget: 一款强大的基因组参考数据库的高效查询工具
学习笔记——过滤器链;监听器;Servlet、Filter、Listener的注解方式开发